PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design of thermoelectric radiant cooling – photovoltaic panels system in the building

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a theoretical model is presented to investigate the performance of a thermoelectric (TE) radiant cooling system combined with photovoltaic (PV) modules as a power supply in a building with an ambient temperature reaching more than 45◦C. The combined system TE/PV performance is studied under different solar radiation by using the hourly analysis program and photovoltaic system software. The thermal and electric characteristics of TE are theoretically investigated under various supplied voltages using the multi-paradigm programming language and numerical computing environment. Also, a theoretical analysis of heat transfer between the TE radiant cooling system and an occupied zone from the side, and the other side between the TE radiant cooling system and duct zone is presented. The maximum power consumption by TE panels and building cooling load of 130 kW is predicted for May and June. The 145 units of PV panels could provide about 50% of the power required by TE panels. The thermal and electric characteristics of TE panels results show the minimum cold surface temperature of 15◦C at a supplied voltage between 6 V and 7 V, and the maximum hot surface temperature of 62◦C at a supplied voltage of 16 V. The surface temperature difference between supplied current and supplied power increases as supplied voltage increases. At a higher supplied voltage of 16 V, the maximum surface temperature difference between supplied current, and supplied power of 150◦C, 3.2 A, and 48 W, respectively. The cooling capacity increases as supplied voltage increases, at a surface temperature difference of –10◦C and supplied voltage of 16 V, the maximum cooling capacity is founded at about 60 W. As supplied voltage decreases the coefficient of performance increases. The maximum coefficient of performance is about 5 at the surface temperature difference of –10◦C and supplied voltage of 8 V.
Rocznik
Strony
85--108
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Middle Technical University, Institute of Technology Baghdad, Al-Za’franiya, 10074, Baghdad, Iraq
  • Middle Technical University, Institute of Technology Baghdad, Al-Za’franiya, 10074, Baghdad, Iraq
Bibliografia
  • [1] Lyu J., Feng X., Cheng Y., Liao C.: Experimental and numerical analysis of air temperature uniformity in occupied zone under stratum ventilation for heating mode.J. Build. Eng. 43(2021), 103016.
  • [2] Benhadid D.S., Benzaoui A.: Refrigerants and their environmental impact. Substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. Search for an adequate refrigerant. Energy Proced. 18(2012), 807–816.
  • [3] Witkowski A., Majkut M.: The impact of CO2 Compression system on the compressor power required for a pulverized coal-fired power plant in post-combustion carbon dioxide sequestration. Arch. Mech. 59(2012)3, 344–360.
  • [4] Ajirlou I.F., Kurtay C.: Assessing the performance of the airflow window for ventilation and thermal comfort in office rooms. Arch. Thermodyn. 42(2021), 3,209–242.
  • [5] Desmons J.: Froid industriel: Reminder. Aide-mémoire. Dunod, 2006 (in French).
  • [6] Iffa R.B., Kairouani L., Bouaziz N.: Optimization of absorption refrigeration systems by the method of computational experiment design. Arch. Thermodyn.40(2019), 1, 85–102.
  • [7] Ahmad S.N., Prakash O.: Thermal performance evaluation of an earth-to-air heat exchanger for the heating mode applications using an experimental test rig. Arch. Thermodyn 43(2022), 1, 185–207.
  • [8] Najafi H., Woodbury K.A.: Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol. Energy 91(2013), 152–160.
  • [9] Kuzichkin O.R., Konstantinov I. S., Vasilyev G.S., Surzhik D.I.: Control of operability of Peltier modules in cooling systems based on the analysis of transient operating modes. Arch. Thermodyn. 42(2021), 2, 31–42.
  • [10] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook: Heating, Ventilating, and Air-Conditioning Systems and Equipment. ASHRAE, 2012.
  • [11] Xu X., Dessel V.S.: Evaluation of prototype active building envelope windowsystem. Energy Build. 40(2008), 2, 168–174.
  • [12] Cheng T.C., Cheng C.H., Huang Z.Z, Liao C.G.: Development of an energysaving module via combination of solar cells an thermoelectric coolers for green building application. Energy 36(2011), 1, 133–140.
  • [13] Daghigh R., Khaledian Y.: Effective design, theoretical and experimental assessment of a solar thermoelectric cooling-heating system. Sol. Energy 162(2018), 561–572.
  • [14] Irshad K., Habib K., Basrawi F., Saha B.B.: Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate. Energy 119(2017), 504–522.
  • [15] PVsyst Software 7.2. https://www.pvsyst.com/download-pvsyst/ (accessed 15 March 2021).
  • [16] Matlab Software, 2015. https://www.mathworks.com/matlabcentral/answers/433589-how-to-download-matlab-2015a (accessed 15 March 2021).
  • [17] Akram M.N., Nirmani H.R., Jayasundere N.D.: A study on thermal and electrical characteristics of thermoelectric cooler TEC1-127 series. In: Proc. 7th Int. Conf. on Intelligent Systems, Modelling and Simulation (ISMS), 25–27 January 2016, Bangkok. IEEE 2016, 430–434.
  • [18] Khouri A.M., Robles M.A.O.: Feasibility and numerical analysis of hybrid photovoltaic (pv) panels with thermoelectric cooling (TEC) systems. In: Bringing Thermoelectricity into Reality. Intechopen, London 2018.
  • [19] Lim H., Jeong J.W.: Investigation of desirable arrangement of thermoelectric modules for the radiant cooling panel. In: 7th Int. Refrigeration and Air Condition Conf. at Purdue, 9-12 July 2018, 1928.
  • [20] Walikewitz N., Jänicke B., Langner M., Meier F., Endlicher W.: The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 84(2015),151–161.
  • [21] Shen L., Xiao F., Chena H., Wang S.: Investigation of a novel thermoelectric radiant air-conditioning system. Energy Build. 59(2012), 123–132.
  • [22] Seyednezhad M., Najaf H.: Solar-powered thermoelectric-based cooling and heating system for building applications: A parametric study. Energies 14(2021), 5573.
  • [23] HAP 4.6 Software. https://www.carrier.com/commercial/en/us/software/hvac-system-design/hourly-analysis-program (accessed 15 March 2021).
  • [24] AutoCAD Software, 2018. https://www.freesoftwarefiles.com/3d-designing/autocad-2018-free-download (accessed 15 March 2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fd66fdf-c6b2-4b62-8eeb-aa0c058f7318
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.