PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diachronic mapping and evaluation of soil erosion rates using RUSLE in the Bouregreg River Watershed, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil erosion has been severely affecting soil and water resources in semi-arid areas like the Mediterranean. In Morocco, this natural process is accelerated by anthropogenic activities, such as unsustainable soil management, overgrazing, and deforestation. With a drainage area of 395,600 ha, the Bouregreg River Watershed extends from the Middle Atlas Range (Jebel Mtourzgane) to the Sidi Mohamed Ben Abdellah (SMBA) dam reservoir south-east of Rabat. Its contrasted eco-geomorphological landscapes make it susceptible to unprecedented soil erosion due to climate change. Resulting changes in erosive dynamics led to huge amounts of solid loads transported to the catchment outlet and, thus, jeopardised the SMBA dam lifespan due to siltation. The research aims to quantify the average annual soil losses in this watershed using the Revised Universal Equation of Soil Losses (RUSLE) within a GIS environment. To highlight shifts in land use/land cover patterns and their effects on erosional severity, we have resorted to remote sensing through two Landsat 8 satellite images captured in 2004 and 2019. The C factor was combined with readily available local data regarding major erosion factors, e.g. rainfall aggressiveness (R), soil erodibility (K), topography (LS), and conservation practices (P). The helped to map the erosion hazard and determine erosion prone areas within the watershed where appropriate water and conservation measures are to be considered. Accordingly, from 2004 to 2019, average annual soil losses increased from 11.78 to 18.38 t∙ha-1∙y-1, as the watershed area affected by strong erosion (>30 t∙ha-1∙y-1) evolved from 13.57 to 39.39%.
Wydawca
Rocznik
Tom
Strony
86--99
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  • Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  • Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology, Functional Ecology and Environmental Engineering Laboratory, Fez, Morocco
autor
  • Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  • Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  • Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  • Mohammed VI Polytechnic University, International Water Research Institute, Ben Guerir, Morocco
Bibliografia
  • ABDELLAOUI B., MERZOUK A., ABERKAN M., ALBERGE J. 2002. Bilan hydrologique et envasement du barrage Saboun (Maroc) [Hydrological balance and siltation of the Saboun dam (Morocco)]. Revue des sciences de l’eau / Journal of Water Science. Vol. 15(4) p. 737–748. DOI 10.7202/705478ar.
  • AIT YACINE E., OUDIJA F., NASSIRI L., ESSAHLAOUI A. 2019. Modeling and mapping of soil water erosion risks through the application of GIS, Remote Sensing and PAP/RAC guidelines. Case of Beht Watershed, Morocco. European Scientific Journal. Vol. 15(12), 259. DOI 10.19044/esj.2019.v15n12p259.
  • BALDASSINI P., PARUELO J.M. 2020. Deforestation and current management practices reduce soil organic carbon in the semi-arid Chaco, Argentina. Agricultural Systems. Vol. 178, 102749. DOI 10.1016/j.agsy.2019.102749.
  • BEAUDET G. 1969. Le plateau central marocain et ses bordures: étude géomorphologique. The Moroccan central plateau and its borders: geomorphological study. Rabbat. French and Moroccan Printing House pp. 478.
  • BEHERA M., SENA D.R., MANDAL U., KASHYAP P.S., DASH S.S. 2020. Integrated GIS-based RUSLE approach for quantification of potential soil erosion under future climate change scenarios. Environmental Monitoring and Assessment. Vol. 192(11) p. 1–18. DOI 10.1007/s10661-020-08688-2.
  • BENCHETTOUH A., KOURI L., JEBARI S. 2017. Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences. Vol. 10, 79. DOI 10.1007/s12517-017-2875-6.
  • BENMANSOUR M., MABIT L., NOUIRA A., MOUSSADEK R., BOUKSIRATE H., DUCHEMIN M., BENKDAD A. 2013. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137 Cs and 210 Pb ex . Journal of Environmental Radioactivity. Vol. 115 p. 97–106. DOI 10.1016/j.jenvrad.2012.07.013.
  • BIDDOCCU M., GUZMAN G., CAPELLO G., THIELKE T., STRAUSS P., WINTER S., ..., GÓMEZ , J.A. 2020. Evaluation of soil erosion risk and identification of soil cover and management factor (C) for RUSLE in European vineyards with different soil management. International Soil and Water Conservation Research. Vol. 8(4) p. 337–353. DOI 10.1016/j.iswcr.2020.07.003.
  • BORRELLI P., ROBINSON D.A., FLEISCHE, L.R., LUGATO E., BALLABIO C., ALEWELL C., ... PANAGOS P. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications. Vol. 8(1) p. 1–13. DOI 10.1038/s41467-017-02142-7.
  • BOUFALA M., EL HMAIDF A., CHADLI K., ESSAHLAOUI A., EL OUALI A., LAHJOUJ A. 2020. Assessment of the risk of soil erosion Rusing RUSLE method and SWAT model at the M’dez Watershed, Middle Atlas, Morocco. In: E3S Web of Conferences. EDP Sciences. Vol. 150, 03014. DOI 10.1051/e3sconf/202015003014.
  • BRYAN R.B 2020. Soil erodibility and processes of water erosion on hillslope. Geomorphology. Vol. 32 (3–4) p. 385–415. DOI 10.1016/S0169-555X(99)00105-1.
  • CHUENCHUM P., XU M., TANG W. 2020. Estimation of soil erosion and sediment yield in the Lancang–Mekong River using the modified revised universal soil loss equation and GIS techniques. Water. Vol. 12(1), 135. DOI 10.3390/w12010135.
  • CLARK M.L. 2015. Using GIS and the RUSLE model to create an index of potential soil erosion at the large basin scale and discussing the implications for water planning and land management in Morocco [online]. Austin. University of Texas. [Access 10.12.2020]. Available at: https://repositories.lib.utexas.edu/han-dle/2152/35476
  • EL JAZOULI A.E., BARAKAT A., KHELLOUK R., RAIS J., BAGHDADI M.E., 2019. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment. Vol. 13 p. 361–374. DOI 10.1016/j.rsase.2018.12.004.
  • FAO 2014. AQUASTAT database [online]. Rome. Food and Agricultural Organization of the United Nations. [Access 10.12.2020]. Available at: https://www.fao.org/aquastat/statistics/query/index.html
  • FERREIRA V.A., WEESIES G.A., YODER D.C., FOSTER G.R., RENARD K.G. 1995. The site and condition specific nature of sensitivity analysis. Journal of Soil and Water Conservation. Vol. 50(5) p. 493–497.
  • FOSTER G.R., TOY T.E., RENARD K.G 2003. Comparison of the USLE, RUSLE1. 06c, and RUSLE2 for application to highly disturbed lands [online]. In: First Interagency Conference on Research in Watersheds. Washington, DC. US Department of Agriculture, Agricultural Research Service p. 154–160. [Access 20.11.2020]. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.6311&rep=rep1&type=PDF
  • GARCÍA-RUIZ J.M., NADAL-ROMERO E., LANA-RENAULT N., BEGUERÍA S. 2013. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology. Vol. 198 p. 20–36. DOI 10.1016/j.geomorph.2013.05.023.
  • GASHAW T., WORQLUL A.W., DILE Y.T., ADDISU S., BANTIDER A., ZELEKE G. 2020. Evaluating potential impacts of land management practices on soil erosion in the Gilgel Abay watershed, upper Blue Nile basin. Heliyon. Vol. 6(8), e04777. DOI 10.1016/j.heliyon.2020.e04777.
  • GHOSAL K., BHATTACHARYA S. 2020. A review of RUSLE model. Journal of the Indian Society of Remote Sensing. Vol. 48(4) p. 689–707. DOI 10.1007/s12524-019-01097-0.
  • GOURFI A., DAOUDI L., DE VENTE J. 2020. A new simple approach to assess sediment yield at a large scale with high landscape diversity: an example of Morocco. Journal of African Earth Sciences. Vol. 168, 103871. DOI 10.1016/j.jafrearsci.2020.103871.
  • HARA F., ACHAB M., EMRAN A., MAHE G. 2020. Study of soil erosion risks using RUSLE Model and remote sensing: Case of the Bouregreg watershed (Morocco). Proceedings of the International Association of Hydrological Sciences. Vol. 383 p. 159–162. DOI 10.5194/piahs-383-159-2020.
  • IBRAHIMI S., DAMNATI B., RADAKOVITCH O., HASSOUNI K., SIMON B. 2005. Using conversion models to estimate soil erosion and deposition rates, from the 137 Cs measurements in cultivated soils (North Morocco). Revista de la Sociedad Geologica de Espana. Vol. 18 (3–4) p. 217–224.
  • KEESSTRA S.D., BOUMA J., WALLINGA J., TITTONELL P., SMITH P., CERDÀ A., ..., FRESCO L.O. 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil. Vol. 2(2) p. 111–128. DOI 10.5194/soil-2-111-2016.
  • KIJOWSKA-STRUGAŁA M., BUCAŁA-HRABIA A., DEMCZUK P. 2018. Long-term impact of land use changes on soil erosion in an agricultural catchment (in the Western Polish Carpathians). Land Degradation & Development. Vol. 29(6) p. 1871–1884. DOI 10.1002/ldr.2936.
  • KINNELL P.I.A 2010. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. Journal of Hydrology. Vol. 385(1–4) p. 384–397. DOI 10.1016/j.jhydrol.2010.01.024.
  • LAHLAOI H., RHINANE H., HILALI A., LAHSSINI S., KHALILE L. 2015. Potential erosion risk calculation using remote sensing and GIS in Oued El Maleh Watershed, Morocco. Journal of Geographic Information System. Vol. 7(2) p. 128–139. DOI 10.4236/jgis.2015.72012.
  • LAHLOU A. 1986. Updated study of dams’ siltation in Morocco. Water Science Journal. No. 6, 337356.
  • LAL R. 2019. Accelerated soil erosion as a source of atmospheric CO 2 . Soil and Tillage Research. Vol. 188 p. 35–40. DOI 10.1016/j.still.2018.02.001.
  • LAOUINA A., MAHÉ G. 2013. Sustainable Land Management. Proceedings of the multi-stakeholder meeting on the Bouregreg basin May 28, 2013 [online]. Rabat. Association for Research in Sustainable Land Management. ISBN 978-9954-33-482-9. [Access 20.11.2020]. Available at: http://www.abhatoo.net.ma/content/download/30362/656090/version/1/file/Gestion+durable+des+terres++Proceedings+de+la+R%C3%A9union+multi-acteurs%2C+sur+le+bassin+du+Bouregreg+28+mai+2013.pdf
  • MANAOUCH M., ZOUAGUI A., FENJIRO I. 2021. A review of soil erosion modeling by R/USLE in Morocco: Achievements and limits. In: E3S Web of Conferences. EDP Sciences. Vol. 234, 00067. DOI 10.1051/e3sconf/202123400067.
  • MAQSOOM A., ASLAM B., HASSAN U., KAZMI Z.A., SODANGI M., TUFAIL R.F., FAROOQ D. 2020. Geospatial assessment of soil erosion intensity and sediment yield using the revised universal soil loss equation (RUSLE) model. ISPRS International Journal of Geo-Information. Vol. 9(6), 356. DOI 10.3390/ijgi9060356.
  • MARKHI A., LAFTOUHI N., GRUSSON Y., SOULAIMANI A. 2019. Assessment of potential soil erosion and sediment yield in the semi-arid N’fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica. Vol. 67. No. 1 p. 263–272. DOI 10.1007/s11600-019-00251-z.
  • MEYER L.D. 1965. Simulation of rainfall for soil erosion research. Transactions of the ASAE. Vol. 8(1) p. 0063–0065. DOI 10.13031/2013.4042.
  • NAPOLI M., CECCHI S., ORLANDINI S., MUGNAI G., ZANCHI C.A. 2016. Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE. Catena. Vol. 145 p. 246–256. DOI 10.1016/j.catena.2016.06.018.
  • OSTOVARI Y., GHORBANI-DASHTAKI S., BAHRAMI H.-A., NADERI M., DEMATTE J.A.M. 2017. Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha Watershed, Northwestern Ethiopia. Geoderma Regional. Vol. 11 p. 28–36. DOI 10.1016/j.geodrs.2017.06.003.
  • PANAGOS P., BORRELLI P., POESEN J., BALLABIO C., LUGATO E., MEUSBURGER K., MONTANARELLA L., ALEWELL C. 2015. The New assessment of soil loss by water erosion in Europe. Environmental Science & Policy. Vol. 54 p. 438–447. DOI 10.1016/j.envsci.2015.08.012.
  • RANGO A., ARNOLDUS H.M.J. 1987. Watershed management. Food and Agriculture Organization Technical Papers. Rome. FAO pp. 36.
  • RELLINI I., SCOPESI C., OLIVARI S., FIRPO M., MAERKER M. 2019. Assessment of soil erosion risk in a typical Mediterranean environment using a high resolution RUSLE approach (Portofino promontory, NW-Italy). Journal of Maps. Vol. 15(2) p. 356–362. DOI 10.1080/17445647.2019.1599452.
  • SCHILLING J., FREIER K.P., HERTIG E., SCHEFFRAN J. 2012. Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems & Environment. Vol. 156 p. 12–26. DOI 10.1016/j.agee.2012.04.021.
  • SCHMIDT S., TRESCH S., MEUSBURGER K. 2019. Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. Methods. Vol. 6 p. 219–229. DOI 10.1016/j.mex.2019.01.004.
  • TANYAŞ H., KOLAT Ç., SÜZEN M.L. 2015. A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. Journal of Hydrology. Vol. 528 p. 584–598. DOI 10.1016/j.jhydrol.2015.06.048.
  • THOMAS D.L., EVANS R.O., SHIRMOHAMMADI A., ENGEL B.A. 1998. Agricultural non-point source water quality models: their use and application. In: Water Resources Engineering’98. Eds. S.R. Abt, J. Young-Pezeshk, C.C. Watson. Florida, FL, USA ASCE. CSREES, EWRI p. 1818–1823.
  • TIAN P., ZHU Z., YUE Q., HE Y., ZHANG Z., HAO F., GUO W., CHEN L., LIU M. 2021. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. International Soil and Water Conservation Research. Vol. 9(3) p. 433–444. DOI 10.1016/j.iswcr.2021.04.007.
  • VAN DER KNIJFF J.M.F., JONES R.J.A., MONTANARELLA L. 1999. Soil erosion risk assessment in Italy [online]. Brussels, Belgium. European Soil Bureau, European Commission pp. 54. [Access 20.11.2020]. Available at: https://esdac.jrc.ec.europa.eu/ESDB_Archive/serae/GRIMM/italia/eritaly.pdf
  • VAN REMORTEL R.D., MAICHLE R.W., HICKEY R.J. 2004. Computing the LS factor for the Revised Universal Soil Loss Equation through array-based slope processing of digital elevation data using a C++ executable. Computers & Geosciences. Vol. 30(9–10) p. 1043–1053. DOI 10.1016/j.cageo.2004.08.001.
  • WISCHMEIER W.H., SMITH D.D. 1965. Predicting rainfall-erosion losses from cropland east of the rocky mountains: Guide for selection of practices for soil and water conservation. Agriculture Handbook. No. 282. Agricultural Research Service, U.S. Department of Agriculture pp. 47.
  • WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses: A guide to conservation planning. A guide for conservation planning. Agriculture Handbook. No. 537. U.S. Department of Agriculture, Science and Education Administration pp. 58.
  • YJJOU M., BOUABID R., HMAIDI A.E., ESSAHLAOUI A., ABASSI M.E. 2014. Modeling water erosion via GIS and the universal soil loss equation in the Oum Er-Rbia watershed. The International Journal of Engineering and Science (IJES). Vol. 3(8) p. 83–91.
  • ZHANG H., YANG Q., LI R., LIU Q., MOORE D., HE P., RITSEMA C.J., GEISSEN V. 2013. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences. Vol. 52 p. 177–188. DOI 10.1016/j.cageo.2012.09.027.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fd25174-ff8b-4196-bc98-54b3097bdce6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.