PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Entropy-based regularization of AdaBoost

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we introduce an entropy-based method to regularize the AdaBoost algorithm. The AdaBoost algorithm is a well-known algorithm used to create aggregated classifiers. In many real-world classification problems in addition to paying special attention classification accuracy of the final classifier, great focus is placed on tuning the number of the so-called weak learners, which are aggregated by the final (strong)classifier. The proposed method is able to improve the AdaBoost algorithm in terms of both criteria. While many approaches to the regularization of boosting algorithms can be complicated, the proposed method is straightforward and easy to implement. We compare the results of the proposed method (EntropyAdaBoost) with the original AdaBoost and also with its regularized version, є-AdaBoost on several classification problems. It is shown that the proposed methods of EntropyAdaBoost and є-AdaBoost are strongly complementary when the improvement of AdaBoost is considered.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • Institute of Computer Science Cracow University of Technology Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • [1] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Pre-diction, 2nd edition, Springer Series in Statistics, 2009. http://www.springer.com/gp/book/9780387848570.
  • [2] R. Meir, G. Rätsch. An introduction to boosting and leveraging. In: S. Mendelson, A.J. Smola [Eds.], Advanced Lectures on Machine Learning, Summer School 2002 Canberra, Australia, February 11–22, 2002 Revised Lectures,118–183, Springer-Verlag New York, Inc., NY, USA, 2003. https://link.springer.com/chapter/10.1007%2F3-540-36434-X4.
  • [3] R.E. Schapire. Theoretical views of boosting and applications. In: O. Watanabe, T. Yokomori [Eds.], Algorithmic Learning Theory: 10th International Conference, ALT99 Tokyo, Japan, December 6–8, 1999 Proceedings, pp. 13–25, Springer, Berlin/Heidelberg, 1999. https://link.springer.com/chapter/10.1007/3-540-46769-62.
  • [4] P. Viola, M.J. Jones. Robust real-time face detection. International Journal of Computer Vision,57(2): 137–154, 2004. https://link.springer.com/article/10.1023/B:VISI.0000013087.49260.fb
  • [5] W. Jiang. Is regularization unnecessary for boosting? In: Proceedings of the Eighth International Work-shop on Artificial Intelligence and Statistics(AISTATS), 2001. http://citeseerx.ist.psu.edu/viewdoc/summa-ry?doi=10.1.1.32.5229.
  • [6] Y. Xi, Z. Xiang, P. Ramadge, R. Schapire. Speed and sparsity of regularized boosting. In: D. van Dyk, M. Welling[Eds.], Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, Clearwater Beach, Florida, USA, Vol. 5 of JMLR: W&CP 5, pp. 615–622, 2009. http://proceedings.mlr.press/v5/xi09a.html.
  • [7] P. Bühlmann, T. Hothorn. Boosting algorithms: regularization, prediction and model fitting, Statistical Science, 22: 477–505, 2007. https://www.jstor.org/stable/27645854.
  • [8] C. Shen, H. Li, A. van den Hengel. Fully corrective boosting with arbitrary loss and regularization. Neural Networks, 48: 44–58, 2013. http://www.sciencedirect.com/science/article/pii/S0893608013001913.
  • [9] M.K. Warmuth, J. Liao, G. Rätsch. Totally corrective boosting algorithms that maximize the margin. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, New York, NY, USA, pp. 1001–1008, 2006. https://users.soe.ucsc.edu/∼manfred/pubs/C75.pdf.
  • [10] D.D. Le, S. Satoh. Ent-Boost: boosting using entropy measures for robust object detection. Pattern Recognition Letters, 28: 1083–1090, 2007. http://www.sciencedirect.com/science/article/pii/S0167865507000190.
  • [11] R.E. Schapire. A brief introduction to boosting. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence(IJCAI), 2: 1401–1406, 1999. https://www.cs.utah.edu/∼piyush/teaching/briefintroboosting.pdf.
  • [12] R.E. Schapire, Y. Freund. Boosting: Foundations and Algorithms. The MIT Press, 2012. https://mitpress.mit.edu/books/boosting.
  • [13] S. Rosset, J. Zhu, T. Hastie. Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research,5: 941–973, 2004. http://www.jmlr.org/papers/volume5/rosset04a/rosset04a.pdf.
  • [14] M. Lichman. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2013. http://archive.ics.uci.edu/ml.
  • [15] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research,7: 1–30, 2006. http://www.jmlr.org/papers/v7/demsar06a.html.
  • [16] J. Derrac, S. Garcia, D. Molina, F. Herrera. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1: 3–18, 2011. http://www.sciencedirect.com/science/article/pii/S2210650211000034.
  • [17] J. Alcalá-Fdez, L. Sánchez, S. Garcia, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, F. Herrera. KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 13: 307–318, 2008. https://link.springer.com/article/10.1007/s00500-008-0323-y.
  • [18] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. Garcia, L. Sánchez, F. Herrera. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing,17: 255–287, 2011. http://sci2s.ugr.es/keel/pdf/keel/articulo/2011-KEEL-dataset-MVLSC.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fcf6698-7590-4ab5-9641-4edb0a1dae16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.