PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical undrained shear strength of loose-medium sand-silt mixtures under monotonic loadings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Empirical relationships are developed for estimating the undrained critical shear strength based on experimental triaxial tests under monotonic loadings. The effect of fines content on the undrained shear strength is analyzed for different combinations of density states. The parametric study indicates that in terms of the soil void ratio and fines content properties, the undrained critical shear strength may increase, or decrease as the amount of fines content increases, consequently showing vulnerability to liquefaction influenced by the fines content percentage. A series of monotonic undrained triaxial tests have been undertaken on a reconstituted saturated sand-silt mixtures specimen. Beyond 30% of fines content, it is shown that a fraction of silt participates in the soil skeleton chain force. In this context, the concept of the equivalent intergranular void ratio may be an appropriate parameter to express the critical shear strength of the soil under investigation. This parameter is able to control the undrained shear strength of non plastic silt and sand mixtures for different density states.
Słowa kluczowe
EN
Rocznik
Strony
331--344
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Laboratory of Construction, Transports and Environment Protection (LCTPE), University of Mostaganem, Mostaganem, Algeria
autor
  • Laboratory of Construction, Transports and Environment Protection (LCTPE), University of Mostaganem, Mostaganem, Algeria
autor
  • Laboratory of Construction, Transports and Environment Protection (LCTPE), University of Mostaganem, Mostaganem, Algeria
Bibliografia
  • 1. ASTM D2487-11, 2011, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA. DOI: 10.1520/D2487-11
  • 2. ASTM D4767-02, 2004, Standard test method for consolidated undrained triaxial compression test for cohesive soils, American Society for Testing and Materials, Vol. 04.08, pp. 1-13
  • 3. Boulanger R.W., Idriss I.M., 2006, Liquefaction susceptibility criteria for silts and clays, Journal of Geotechnical And Geoenvironmental Engineering, 132, 11, 1413-1426, doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413)
  • 4. Bray J.D., Sancio R.B., 2006, Assessment of the liquefaction susceptibility of finegrained soils, Journal of Geotechnical and Geoenvironmental Engineering, 132, 9, 1165-1177, doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1165)
  • 5. Chang N.Y., Yeh S.T., Kaufman L.P., 1982, Liquefaction potential of clean and silty sands, Proceedings of the Third International Earthquake Microzonation Conference, 2, 1017-1032
  • 6. Fourie A.B., Tshabalala L., 2005, Initiation of static liquefaction and the role of K0 consolidation, Canadian Geotechnical Journal, 42, 3, 892-906, dx.doi.org/10.1139/t05-026
  • 7. Holzer T.L., Bennett M.J., Ponti D.J., Tinsley III J.C., 1999, Liquefaction and soil failure during 1994 Northridge earthquake, Journal of Geotechnical and Geoenvironmental Engineering, 125, 6, 438-452, doi.org/10.1061/(ASCE)1090-0241(1999)125:6(438)
  • 8. Ishihara K., 1993, Liquefaction and flow failure during earthquakes, Geotechnique, 43, 3, 351-415, icevirtuallibrary.com/content/article/10.1680/geot.1993.43.3.351
  • 9. Koester J.P., 1994, The influence of fines type and content on cyclic strength, Ground Failures under Seismic Conditions, ASCE, 17-33
  • 10. Kokusho T., Nagao Y., Ito F., Fukuyama T., 2014, Sand liquefaction observed during recent earthquake and basic laboratory studies on aging effect, Earthquake Geotechnical Engineering Design, 75-92, Springer International Publishing. doi: 10.1007/978-3-319-03182-8 3
  • 11. Kramer S.L., Seed H.B., 1988, Initiation of soil liquefaction under static loading conditions, Journal of Geotechnical Engineering, 114, 4, 412-430, dx.doi.org/10.1061/(ASCE)0733- 9410(1988)114:4(412)
  • 12. Ladd R.S., 1974, Specimen preparation and liquefaction of sands, Journal of the Geotechnical Engineering Division, 100, 10, 1180-1184
  • 13. Maheshwari B.K., Patel A.K., 2010, Effects of non-plastic silts on liquefaction potential of Solani sand, Geotechnical and Geological Engineering, 28, 5, 559-566, doi.org/10.1007/s10706-010- 9310-z
  • 14. McGeary R.K., 1961, Mechanical packing of spherical particles, Journal of the American Ceramic Society, 44, 10, 513-522, dx.doi.org/10.1111/j.1151-2916.1961.tb13716.x
  • 15. Mulilis J.P., Arulanandan K., Mitchell J.K., Chan C.K., Seed H.B., 1977, Effects of sample preparation on sand liquefaction, Journal of the Geotechnical Engineering Division, 103, 2, 91-108
  • 16. Ni Q., Tan T.S., Dasari G.R., Hight D.W., 2004, Contribution of fines to the compressive strength of mixed soils, Geotechnique, 54, 9, 561-569, refdoc.fr/Detailnotice?idarticle=8461334
  • 17. Olson S., Stark T., 2003, Yield strength ratio and liquefaction analysis of slopes and embankments, Journal of Geotechnical and Geoenvironmental Engineering, 129, 8, 727-737, doi.org/10.1061/(ASCE)1090-0241(2003)129:8(727)
  • 18. Pitman T.D., Robertson P.K., Sego D.C., 1994, Influence of fines on the collapse of loose sands, Canadian Geotechnical Journal, 31, 5, 728-739, doi/abs/10.1139/t94-084
  • 19. Prakash S., Puri V.K., 2010, Recent advances in liquefaction of fine grained soils, 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, 1-6
  • 20. Rahman M.M., Lo S.R., Gnanendran C.T., 2008, On equivalent granular void ratio and steady state behaviour of loose sand with fines, Canadian Geotechnical Journal, 45, 10, 1439-1455, dx.doi.org/10.1139/T08-064
  • 21. Schofield A., Wroth P., 1968, Critical State Soil Mechanics, London, McGraw-Hill
  • 22. Seed H.B., Idriss I.M., Arango I., 1983, Evaluation of liquefaction potential using field performance data, Journal of Geotechnical Engineering, 109, 3, 458-482, doi.org/10.1061/(ASCE)0733- 9410(1983)109:3(458)
  • 23. Shen C.K., Vrymoed J.L., Uyeno C.K., 1977, The effects of fines on liquefaction of sands, Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 381-385
  • 24. Shenthan T., 2005, Liquefaction mitigation in silty soils using composite stone column, Ph.D. Dissertation, University at Buffalo, Buffalo, NY
  • 25. Thevanayagam S., Mohan S., 2000, Intergranular state variables and stress–strain behaviour of silty sands, Geotechnique, 50, 1, 1-23, doi:10.1680/geot.2000.50.1.1
  • 26. Thevanayagam S., Shenthan T., Kanagalingam T., 2003, Role of Intergranular Contacts on Mechanisms Causing Liquefaction and Slope Failures in Silty Sands, Final Report, USGS Award No. 01HQGR0032 and 99HQGR0021. U.S. Geological Survey, Department of the Interior, Reston, Va
  • 27. Thevanayagam S., Shenthan T., Mohan S., Liang J., 2002, Undrained fragility of clean sands, silty sands, and sandy silts, Journal of Geotechnical and Geoenvironmental Engineering, 128, 10, 849-859
  • 28. Troncoso J.H., Verdugo R., 1985, Silt content and dynamic behavior of tailing sands, Proceedings of XI International Conference on Soil Mechanics and Foundation Engineering, 1311-1314
  • 29. Vaid Y.P., 1994, Liquefaction of silty soils, Ground Failures under Seismic Conditions. Geotechnical Special Publication, 44, American Society of Civil Engineers, 1-16
  • 30. Vaid Y.P., Chern J.C., 1983, Mechanism of deformation during cyclic undrained loading of saturated sands, International Journal of Soil Dynamics and Earthquake Engineering, 2, 3, 171- 177, doi.org/10.1016/0261-7277 (83) 90014-1
  • 31. Vaid Y.P., Sivathayalan S., Stedman D., 1999, Influence of specimen-reconstituting method on the undrained response of sand, ASTM Geotechnical Testing Journal, 22, 3, 187-195, refdoc.fr/Detailnotice?idarticle=11381016
  • 32. Wang W.S., 1979, Some findings in soil liquefaction, Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China
  • 33. Yamamuro J.A., Kelly M.C., 2001, Monotonic and cyclic liquefaction of very loose sands with high silt content, Journal of Geotechnical and Geoenvironmental Engineering, 127, 4, 314-324, doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314)
  • 34. Yamamuro J.A., Lade P.V., 1997, Static liquefaction of very loose sands, Canadian Geotechnical Journal, 34, 6, 905-917, doi.org/10.1139/t97-057
  • 35. Yamamuro J.A., Lade P.V., 1998, Steady-state concepts and static liquefaction of silty sands, Journal of Geotechnical and Geoenvironmental Engineering, 124, 9, 868-877, doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868)
  • 36. Yang S.L., Lacasse S., Sandven R.F., 2006, Determination of the transitional fines content of mixtures of sand and non plastic fines, Geotechnical Testing Journal, 29, 2, 102-107, hrefdoc.fr/Detailnotice?idarticle=6662871
  • 37. Zlatovic S., Ishihara K., 1995, On the influence of non-plastic fines on residual strength, Proceedings of the First International Conference on Earthquake Geotechnical Engineering, Tokyo, 14-16
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fced5c4-b3c2-4afc-b43b-77c451dc2722
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.