PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modelling of water-based Fe3O4 nanofluid due to rotating disc and comparison with similarity solution

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current research demonstrates the revolving flow of water-based Fe3O4 nanofluid due to the uniform rotation of the disc. This flow of nanofluid is investigated using CFD Module in COMSOL Multiphysics. However, the similarity solution for this flow is also ob-tained after transforming the given equation into a non-dimensional form. In the CFD Module, streamlines and surface plots are compared with the similarity solution for the magnitude of the velocity, radial velocity, tangential velocity, and axial velocity. The results from the direct simulation in the CFD Module and the solution of dimensionless equations represent a similar solution of velocity distribution. The derived results show that increasing the volume concentration of nanoparticles and effective magnetic parameters decrease the velocity distribu-tion in the flow. Results in the CFD Module are important for monitoring the real-time particle tracing in the flow and, on the other hand, the dimensionless solution is also significant for the physical interpretation of the problem. Both methods of solution empower each other and present the physical model without sacrificing the relevant physical phenomena.
Słowa kluczowe
Rocznik
Strony
113--121
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Department of Mathematics, School of Engineering, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Bidholi, Dehradun- 248007, Uttarakhand, India
Bibliografia
  • 1. Abo-Elkhair R.E., Bhatti M.M., Mekheimer K.S. (2021), Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au–Cu nanoparticles) with moderate Reynolds number: An expanding horizon, Int. Commun. Heat Mass Transf., 123, 105228.
  • 2. Ali Z., Zeeshan A, Bhatti M.M., Hobiny A., Saeed T. (2021), Insight into the Dynamics of Oldroyd-B Fluid Over an Upper Horizontal Surface of a Paraboloid of Revolution Subject to Chemical Reaction Dependent on the First-Order Activation Energy, Arab. J. Sci. Eng., 1–10.
  • 3. Alsabery A.I., Ghalambaz M., Armaghani T., Chamkha, I. Hashim I., Pour M.S. (2020), Role of rotating cylinder toward mixed convection inside a wavy heated cavity via two-phase nanofluid concept, Nanomaterials, 10(6), 1–22.
  • 4. Arain M.B, Bhatti M.M., Zeeshan A., Saeed T., Hobiny A. (2020), Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates, Math. Probl. Eng., 2020.
  • 5. Attia H.A (1998), Unsteady MHD flow near a rotating porous disk with uniform suction or injection, Fluid Dyn. Res., 23(5), 283–290.
  • 6. Attia H.A. (2007), On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating, Chem. Eng. Commun., 194(10), 1396–1407.
  • 7. Bachok N., Ishak A., Pop I. (2011), Flow and heat transfer over a rotating porous disk in a nanofluid, Phys. B Phys. Condens. Matter, 406(9), 1767–1772.
  • 8. Bacri J.C., Perzynski R., Shliomis M.I., Burde G.I. (1995), Negative-viscosity effect in a magnetic fluid, Phys. Rev. Lett., 75(11), 2128–2131.
  • 9. Benton E.R. (1966), On the flow due to a rotating disk, J. Fluid Mech., 24(4), 781–800.
  • 10. Bhandari A. (2020a), Study of ferrofluid flow in a rotating system through mathematical modeling, Math. Comput. Simul., 178, 290–306.
  • 11. Bhandari A. (2020b), Study of magnetoviscous effects on ferrofluid flow, Eur. Phys. J. Plus, 135(7), 537.
  • 12. Bhatti M.M, Marin M., Zeeshan A., Ellahi R., Abdelsalam S.I. (2020a), Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries, Front. Phys., 8(95).
  • 13. Bhatti M.M., Riaz A., Zhang L., Sait S.M., Ellahi R. (2020b), Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis, J. Therm. Anal. Calorim., 1–16.
  • 14. Chamkha A.J. (1996), Non-darcy hydromagnetic free convection from a cone and a wedge in porous media, Int. Commun. Heat Mass Transf., 23(6), 875–887.
  • 15. Chamkha A.J. (1997), MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects, Appl. Math. Model., 21(10), 603–609.
  • 16. Chamkha A.J., Dogonchi A.S., Ganji D.D. (2019), Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, AIP Adv., 9(2), 025103.
  • 17. Chaturani P., Narasimman S. (1991), Numerical solution of a micropolar fluid flow between two rotating coaxial disks, Acta Mech., 89(1-4), 133–145.
  • 18. Cochran W.G. (1934), The flow due to a rotating disc, Math. Proc. Cambridge Philos. Soc., 30(3), 365–375.
  • 19. Hayat T., Aziz A., Muhammad T., Alsaedi A. (2018a), Numerical treatment for Darcy–Forchheimer flow of nanofluid due to a rotating disk with convective heat and mass conditions, Int. J. Numer. Methods Heat Fluid Flow, 28(11), 2531–2550.
  • 20. Hayat T., Qayyum S., Khan M.I., Alsaedi A. (2018b), Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids, 30(1), 017101.
  • 21. Hayat T., Rashid M., Imtiaz M., Alsaedi A. (2017), Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions, Int. J. Heat Mass Transf., 113, 96–105.
  • 22. Ijaz Khan M., Khan S.A., Hayat T., Imran Khan M., Alsaedi A. (2020), Entropy optimization analysis in MHD nanomaterials (TiO2-GO) flow with homogeneous and heterogeneous reactions, Comput. Methods Programs Biomed., 184.
  • 23. Kelson N., Desseaux A. (2000), Note on porous rotating disk flow, ANZIAM J., 42, 837.
  • 24. Krishna M.V., Chamkha A.J. (2020), Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium, Int. Commun. Heat Mass Transf., 113, 104494.
  • 25. Kumar B., Seth G.D., Nandkeolyar R., Chamkha A.J. (2019), Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid, Int. J. Therm. Sci., 146, 106101.
  • 26. Mustafa M. (2017), MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model, Int. J. Heat Mass Transf., 108, 1910–1916.
  • 27. Odenbach S., Thurm S. (2002), Magnetoviscous Effects in Ferro-fluids, 185–201.
  • 28. Qayyum S., Hayat T., Khan M.I., Alsaedi A. (2018), Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects, J. Mol. Liq., 262, 261–274.
  • 29. Rahman M. (1978), On the numerical solution of the flow between a rotating and a stationary disk, J. Comput. Appl. Math., 4(4), 289–293.
  • 30. Ram P., Bhandari A. (2013a), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.
  • 31. Ram P., Bhandari A. (2013b), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.
  • 32. Ram P., Bhandari A. (2013c), Negative viscosity effects on ferrofluid flow due to a rotating disk, Int. J. Appl. Electromagn. Mech., 41(4), 467–478.
  • 33. Ram P., Sharma K., Bhandari A. (2010), Effect of Porosity on Ferrofluid Flow With Rotating Disk, 6(16), 67–76.
  • 34. Rashidi M.M., Abelman S., Mehr N.F. (2013), Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62(1), 515–525.
  • 35. Reddy P.S., Sreedevi P., Chamkha A.J. (2017), MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction, Powder Technol., 307, 46–55.
  • 36. Rosensweig R.E. (1997), Ferrohydrodynamics, Dover Publications.
  • 37. Schlichting H., Gersten K. (2017), Boundary-Layer Theor, Berlin, Heidelberg: Springer Berlin Heidelberg.
  • 38. Schultz D.H., Shah V.L. (1979), Numerical solution of laminar recirculating flow between shrouded rotating disks, Comput. Fluids, 7(2), 137–144.
  • 39. Selimefendigil F., Chamkha A.J. (2019), MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder, Int. J. Numer. Methods Heat Fluid Flow, 30(4), 1637–1660.
  • 40. Sheikholeslami M., Shehzad S.A. (2018), Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source, Int. J. Heat Mass Transf., 118, 182–192.
  • 41. Shliomis M.I., Morozov K.I. (1994), Negative viscosity of ferrofluid under alternating magnetic field, Phys. Fluids, 6(8), 2855–2861.
  • 42. Takhar H.S., Chamkha A.J., Nath G. (2002), Combined heat and mass transfer along a vertical moving cylinder with a free stream, Heat Mass Transf., 36(3), 237–246.
  • 43. Takhar H.S., Chamkha A.J., Nath G. (2003), Unsteady mixed convection flow from a rotating vertical cone with a magnetic field, Heat Mass Transf. und Stoffuebertragung, 39(4), 297–304.
  • 44. Thameem Basha H., Sivaraj R., Subramanyam Reddy A., Chamkha A.J. (2019), SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation – solar energy application, Eur. Phys. J. Spec. Top., 228(12), 2531–2551.
  • 45. Turkyilmazoglu M. (2012), MHD fluid flow and heat transfer due to a stretching rotating disk, Int. J. Therm. Sci., 51(1), 195–201.
  • 46. Turkyilmazoglu M. (2014), Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94, 139–146.
  • 47. Veera Krishna M., Ameer Ahamad N., Chamkha A.J. (2020), Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate, Alexandria Eng. J., 59(2), 565–577.
  • 48. Veera Krishna M., Chamkha A.J. (2019), Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium, Results Phys., 15, 102652.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fc5b146-2194-4795-b588-84461cb84bde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.