Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, energy slope averaging in the one-dimensional steady gradually varied flow model is considered. For this purpose, different methods of averaging the energy slope between cross-sections are used. The most popular are arithmetic, geometric, harmonic and hydraulic means. However, from the formal viewpoint, the application of different averaging formulas results in different numerical integration formulas. This study examines the basic properties of numerical methods resulting from different types of averaging.
Rocznik
Tom
Strony
101--119
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
- Ascher U. M., Petzold L. R. (1998) Computer methods for Ordinary Differential Equations and Difference-Algebraic Equations, SIAM, Philadelphia.
- ArtichowiczW., Szymkiewicz R. (2014) Computational issues of solving the 1D steady gradually varied flow equation, J. Hydrol. Hydromech., 62 (3), 226–233, DOI: 10.2478/johh-2014-0031.
- Artichowicz, W., Mikos-Studnicka, P. (2014) Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow, Archives of Hydro-Engineering and Environmental Mechanics, 61 (3–4), 89–109, DOI: 10.1515/heem-2015-0006
- Chanson H. (2004) The hydraulics of open channel flow: an introduction. Second Edition. Elsevier.
- Chadderton R. A., Miller A. C. (1980) Friction models for M2 profiles, JAWRA Journal of the American Water Resources Association, 16 (2), 235–242, DOI: 10.1111/j.1752-1688.1980.tb02384.x.
- Cunge J. A., Holly F. M., Verwey A. (1979) Practical aspects of computational river hydraulics, Pitman advanced publishing program, Boston, London, Melbourne.
- Chow V. T. (1959) Open-channel hydraulics, McGraw-Hill / Kogakusha Company LTD, Tokyo.
- Fatunla S. O. (1982) Nonlinear multistep methods for initial value problems, Computers&Mathematics with Applications, 8 (3), 231–239, DOI: 10.1016/0898-1221(82)90046-3.
- French R. H. (1985) Open Channel Hydraulics, McGraw-Hill, New York.
- Gustafsson B. (2011) Fundamentals of Scientific Computing, Springer-Verlag, Berlin, Heidelberg.
- Gasiorowski D. (2013) Impact of diffusion coefficient averaging on solution accuracy of the 2D nonlinear diffusive wave equation for floodplain inundation, Journal of Hydrology, 517, 923–935, DOI:10.1016/j.jhydrol.2014.06.039.
- Hairer E.,Wanner G. (2010) Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Second Revised Edition, Springer, Berlin, Heidelberg.
- Kincaid D., CheneyW. (2002) Numerical Analysis ,Wydawnictwa Naukowo-Techniczne,Warszawa (in Polish).
- Lambert J. D., Shaw B. (1965) A Method for Numerical Solution of y0 = f (x; y) Based on a Self-Adjusting Non-Polynomial Interpolant, Math. Comp., 20, 11–20, DOI: 10.1090/S0025-5718-1966-0189252-1.
- Laurenson E. M. (1986) Friction Slope Averaging in Backwater Calculations, J. Hydraul. Eng., 112 (12), 1151–1163.
- LeVeque R. J. (2007) Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, DOI:10.1137/1.9780898717839.
- Luke Y. L., FairW.,Wimp J. (1975) Predictor-corrector formulas based on rational interpolants., Computers & Mathematics with Applications, 1 (1), 3–12, DOI: 10.1016/0898-1221(75)90003-6.
- MacDonald I., Baines M. J., Nichols N. K., Samuels P. G. (1997) Analytic Benchmark Solutions for Open-Channel Flows, J. Hydraul. Eng., 123 (11), 1041–1045.
- Szymkiewicz R. (2010) Numerical modeling in open channel hydraulics, Springer.
- US Army Corps of Engineers (2010) HEC-RAS hydraulic reference.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fbfa81d-0e5f-4f97-b783-57e1e67d2944