PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties and quantum mechanical simulations of natural rubber composites with cerium complexes under aging conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enhancing the service life of natural rubber (NR) products, including antioxidants, is crucial to prevent rubber degradation and enhance its oxidation resistance. Phenolic antioxidant 2246 and cerium complex of p-amino salicylic acid (PAS-Ce) are utilized as NR antioxidants. Numerous studies have qualitatively analyzed the antioxidant mechanisms of these compounds. Building upon this perspective, this study quantitatively assessed the protective mechanisms of these antioxidants by combining experimental data with molecular simulations. Additionally, it compared their impacts on the thermal oxidative aging performance of NR. The findings revealed that the PAS-Ce/NR system exhibited the highest mechanical performance retention following multiple days of thermal-oxidative aging. Analyzing the PAS-Ce/NR system through ATR-FTIR and DTA techniques demonstrated that it had the lowest C=O content after thermal-oxidative aging. Furthermore, calculating the activation energy required for thermal-oxidative aging decomposition using the Kissinger and FWO methods indicated that PAS-Ce/NR had the highest activation energy, suggesting superior inhibitory effects against thermal-oxidative aging. Quantum mechanical simulations also illustrated that the dissociation energy of the O-H bond in antioxidants 2246 and PAS-Ce was lower than that of the C-H bond in NR. However, PAS-Ce exhibited a quicker capture of radical species, effectively delaying the oxidation reaction rate of NR molecular chains and thus more efficiently inhibiting the aging process. These insights contribute significantly to comprehending the antioxidative mechanisms in NR aging.
Wydawca
Rocznik
Strony
158--170
Opis fizyczny
BIbliogr. 24 poz., rys., tab.
Twórcy
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
autor
  • Inner Mongolia University of Science and Technology, Rare Earth Engineering Technology Institute, Baotou 014010
  • Ministry of Education Key Laboratory for Green Extraction and Efficient Use of Light Rare Earth Resources, Baotou 014010
  • Baotou Key Laboratory for Rare Earth Hydrometallurgy and Light Rare Earth Applications, Inner Mongolia Autonomous Region, Baotou 014010
Bibliografia
  • [1] Institute of Synthetic Materials Ageing, Ministry of Chemical Industry, ed. Ageing and anti-ageing of polymeric materials [M]. Beijing: Chemical Industry Press; 1979.
  • [2] Sulekha PB, Joseph R, Manjooran KB. New oligomerbound antioxidant in natural rubber/polybutadiene rubber and natural rubber/styrene-butadiene rubber blends[J]. J. Appl. Polym. Sci. 2004;93:437–443, DOI: 10.1002/app.20427.
  • [3] Fang L, Song YH, Zhu XN, . Influence of lanthanum stearate as a co-stabilizer on stabilization sufficiency of calcium/zinc stabilizers to polyvinyl chloride [J]. Polym. Degrad. Stab. 2009;94(5):845–850, DOI: 10.1016/j.polymdegradstab.2009.01.024.
  • [4] Xie C, Jia Z, Jia D, . The effect of Dy (III) complex with 2-Mercaptobenzimidazole on the thermooxidation ageing behavior of natural rubber vulcanizates[J]. Int. J. Polym. Mater. 2010;59(9):663–679, DOI: 10.1080/00914037.2010.483210.
  • [5] Fang L, Song YH, Zhu XN, . Influence of lanthanum stearate as a stabilizer on stabilization efficiency of calcium/zinc stabilizers to polyvinyl ride[J]. Polym. Degrad. Stab. 2009;94(5):845–850, DOI: 10.1016/j.polymdegradstab.2009.01.024.
  • [6] Zhang YP, Chen J, Guo SH, . Application of rare earth type hindered phenolic antioxidants in natural rubber[J]. Rubber Industry. 2013,60(12):738–742, DOI: CNKI:SUN:XJGY.0.2013-12-015.
  • [7] Chen Z, Zhao X, Guo S. Synthesis of new rare earth antioxidants and research on the protective properties of natural rubber[J]. Chem. Pet. Eng. 2013;26(3):23–29, DOI: CNKI:SUN:SYHX.0.2013-03-005.
  • [8] Zheng W, Jia Z, Zhang Z, . Improvements of lanthanum complex on the thermal-oxidative stability of natural rubber[J]. J. Mater. Sci. 2016;51(19):9043–9056, DOI: 10.1007/s10853-016-0157-4.
  • [9] Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys. Rev. B Condens. Matter. 1986, DOI: 10.1103/physrevb.33.8822.
  • [10] Houk KN, Beno BR, Nendel M, . Exploration of pericyclic reaction transition structures by quantum mechanical methods: competing concerted and stepwise mechanisms[J]. J. Mol. Struct. 1997;s(398–399):169–179, DOI: 10.1016/s0166-1280(96)04970-6.
  • [11] Kpulselak J, Sykora R, Hudec I. Sulfur and peroxide curing of Rubber Compounds based on NR and NBR. Part II: Thermo-oxidative Ageing[J]. Kutsch. Gummi Kunstst. 2017.
  • [12] Xiang KW, Huang GS, Zhong J, . Investigation on the thermal oxidative ageing mechanism and lifetime prediction of butyl rubber[J]. Macromol. Res. 2013;21(1):10–16, DOI: 10.1007/s13233-012-0174-3.
  • [13] Xie C, Jia Z, Jia D, . The effect of Dy(III) complex with 2-mercapto benzimidazole on the Thermooxidation ageing behavior of natural rubber vulcanizates[J]. Int. J. Polym. Mater. 2010;59(9):663–679, DOI: 10.1080/00914037.2010.483210.
  • [14] Marinovic-Cincovic M, Jankovic B, Jovanovic V, . The kinetic and thermodynamic analyses of the non-isothermal degradation process of acrylonitrile-butadiene and ethylene-propylene-diene rubbers[J]. Compos. B. Eng. 2013;45(1):321–332, DOI: 10.1016/j.compositesb.2012.08.006.
  • [15] Chen M, Ao N, Zhang B, . Comparison and evaluation of the thermo-oxidative stability of medical natural rubber latex products prepared with a sulfur vulcanization system and a peroxide vulcanization system[J]. J. Appl. Polym. Sci. 2010;98(2):591–597, DOI: 10.1002/app.22047.
  • [16] Chen J, Zhang W, Xiao L, . Thermal degradation kinetics of a linked polyurethane acrylate film[J]. J. Test. Eval. 2014;42(2):298–304, DOI: 10.1520/jte20120251.
  • [17] Lan L, Yu H, Wang S, . Thermal degradation behavior of styrene-butadiene-styrene triblock copolymer/multiwalled carbon nanotubes composites[J]. J. Appl. Polym. Sci. 2010;112(1):524–531, DOI: 10.1002/app.29414.
  • [18] Nakazono T, Matsumoto A. Mechanical properties and thermal ageing behavior of styrene-butadiene rubbers vulcanized using liquid diene polymers as the plasticizer[J]. J. Appl. Polym. Sci. 2010;118(4):2314–2320, DOI: 10.1002/app.31483.
  • [19] Xie C, Jia Z, Jia D, . The effect of Dy (III) complex with 2-Mercaptobenzimidazole on the thermooxidation ageing behavior of natural rubber vulcanizates[J]. Int. J. Polym. Mater. 2010;59(9):663–679, DOI: 10.1080/00914037.2010.483210.
  • [20] Cunneen JI. Oxidative ageing of natural rubber[J]. Rubber Chem. Technol. 1968;41(1):182–208.
  • [21] Bevilacqua EM, English ES. The scission step in hevea oxidation[J]. J. Polym. Sci. 1961;49(152):495–505, DOI: 10.1002/pol.1961.1204915229.
  • [22] Xiang K, Wu S, Huang G, . Relaxation behavior and time-temperature superposition (TTS) profiles of thermally aged styrene-butadiene rubber(SBR)[J]. Macromol. Res. 2014;22(8):820–825, DOI: 10.1007/s13233-014-2106-x.
  • [23] Zheng W, Liu L, Zhao X, . Effects of lanthanum complex on the thermos-oxidative ageing of natural rubber[J]. Polym. Degrad. Stab. 2015;120:377–383, DOI: 10.1016/j.polymdegradstab.2015.07.024.
  • [24] Komethi M, Othman N, Ismail H, Sasidharan S. Comparative study on natural antioxidant as an ageing retardant for natural rubber vulcanizates[J]. J. Appl. Polym. Sci. 2012;124(2):1490–1500, DOI: 10.1002/app.35160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fbcaecb-7d25-4894-9451-d168a7a0774a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.