PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative geochemical assessment of jotunite rocks from the Suwałki Massif and the Sejny Intrusion (NE Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Jotunites (hypersthene monzodiorites/ferromonzodiorites) are rocks coeval with plutonic AMCG (anorthosite– mangerite–charnockite–rapakivi granite) suites, which are characteristic of the Proterozoic Eon. It has been experimentally shown that jotunite magma can be recognised as parental to anorthosites and related rocks: since then, research on these rocks has taken on a particular importance. Jotunites were recently described within the deeply buried c. 1.5 Ga Suwałki and Sejny anorthosite massifs in the crystalline basement of NE Poland. The major and trace element compositions of Polish jotunites show them to have a calc-alkalic to alkali-calcic and ferroan character, with a relatively wide range of SiO2 content (40.56 wt. % up to 47.46 wt. %) and high concentrations of Fe (up to 22.63 wt. % Fe2O3), Ti (up to 4.34 wt. % TiO2) and P (up to 1.46 wt. % P2O5). Slight differences in textural features, mineralogical compositions, and geochemistry of whole-rock jotunite samples from distinct massifs allow us to distinguish two kinds: a primitive one, present in the Sejny Intrusion, and a more evolved one, related to the Suwałki Massif.
Rocznik
Strony
513--529
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, PL-00-975 Warsaw, Poland
Bibliografia
  • 1. Ashwal, L.D. 1982. Mineralogy of mafic and Fe-Ti oxide-rich differentiates of the Marcy anorthosite massif, Adirondacks, New York. American Mineralogist, 67, 14-27.
  • 2. Ashwal, L.D. 1993. Proterozoic Massif-Type Anorthosites. In: Ashwal, L.D. (Ed.), Anorthosites, pp. 82-218. Springer Verlag; Heidelberg and New York.
  • 3. Ashwal, L.D. 2010. The temporality of anorthosite. The Canadian Mineralogist, 48, 711-728.
  • 4. Bagiński, B., Duchesne, J.C., Vander Auwera, J., Martin, H. and Wiszniewska, J. 2001. Petrology and geochemistry of rapakivi-type granites from the crystalline basement of NE Poland. Geological Quarterly, 45, 33-52.
  • 5. Bagiński, B., Duchesne, J.C., Martin, H. and Wiszniewska, J. 2007. Isotopic and geochemical constraints on the evolution of the Mazury granitoids, NE Poland. In: Kozłowski, A. and Wiszniewska, J. (Eds), Granitoids in Poland, pp. 11-30. AM Monograph No. 1, University of Warsaw; Warszawa.
  • 6. Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry, 63-114. Elsevier; Amsterdam.
  • 7. Charlier, B., Namur, O., Duchesne, J.C., Wiszniewska, J., Parecki, A. and Vander Auwera, J. 2009. Cumulate origin and polybaric crystallization of Fe-Ti oxide ores in the Suwałki anorthosite, northeastern Poland. Economic Geology, 104, 205-221.
  • 8. Cieśla, E., Podemski, M., Ryka, W. and Wybraniec, S. 1998. Outline studies of the Suwałki Anorthosite Massif. In: Ryka, W. and Podemski, M. (Eds), Geology of the Suwałki Anorthosite Massif (northeastern Poland). Prace Państwowego Instytutu Geologiczego, 61, 39-45.
  • 9. Claesson, S., Bogdanova, S.V., Bibikova, E.V. and Gorbatschev, R. 2001. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics, 339, 1-18.
  • 10. Cymerman, Z. 2014. Structural and kinematic analysis and the Mesoproterozoic tectonic evolution of the Suwałki Massif and its surroundings (NE Poland). Prace Państwowego Instytutu Geologicznego, 201, 1-172. [In Polish]
  • 11. Demaiffe, D. and Hertogen, J. 1981. Rare earth element geochemistry and strontium isotopic composition of a massiftype anorthositic-charnockitic body: the Hidra Massif (Rogaland, SW Norway). Geochimica et Cosmochimica Acta, 45, 1545-1561.
  • 12. Droop, G.T.R. 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51 (361), 431-435.
  • 13. Duchesne, J.C. and Demaiffe, D. 1978. Trace elements and anorthosite genesis. Earth and Planetary Science Letters, 38, 249-272.
  • 14. Duchesne, J.C., Liégeois, J.P., Vander Auwera, J. and Longhi, J. 1999. The crustal tongue melting model and the origin of massive anorthosites. Terra Nova, 11, 100-105.
  • 15. Duchesne, J.C., Martin, H., Bagiń ski, B., Wiszniewska, J., and Vander Auwera, J. 2010. The origin of ferroan-potassic A-type granitoids: the case of the hornblende-biotite granite suite of the Mesoproterozoic Mazury complex, northeastern Poland. The Canadian Mineralogist, 48, 947-968.
  • 16. Duchesne, J.C., Roelandts, I., Demaiffe, D., Hertogen, J., Gijbels, R. and De Winter, J. 1974. Rare-earth data on monzonoritic rocks related to anorthosites and their bearing on the nature of the parental magma of the anorthositic series. Earth and Planetary Science Letters, 24, 325-335.
  • 17. Duchesne, J.C., Shumlyanskyy, L. and Mytrokhyn, O.V. 2017. The jotunite of the Korosten AMCG complex (Ukrainian shield): Crust or mantle derived? Precambrian Research, 299, 58-74.
  • 18. Emslie, R.F. 1975. Pyroxene megacrysts from anorthositic rocks; new clues to the sources and evolution of the parent magmas. The Canadian Mineralogist, 13, 138-145.
  • 19. Emslie, R.F. 1978. Anorthosite massifs, Rapakivi granites, and the late Proterozoic rifting of North America. Precambrian Research, 7, 61-98.
  • 20. Emslie, R.F. 1985. Proterozoic anorthosite massifs. In: Tobi, A.C. and Touret, J.L.R. (Eds), The deep Proterozoic Crust in the North Atlantic Provinces, pp. 39-60. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 158. Springer; Dordrecht.
  • 21. Emslie, R.F., Hamilton, M.A. and Thériault, R.J. 1994. Petrogenesis of a mid-Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) complex: Isotopic and chemical evidence from the Nain Plutonic Suite. The Journal of Geology, 102, 539-558.
  • 22. Fram, M.S. and Longhi, J. 1992. Phase equilibria of dikes associated with Proterozoic anorthosite complexes. American Mineralogist, 77, 605-616.
  • 23. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048.
  • 24. Frost, B.R., Lindsley, D.H. and Simmons, C. 1989. Penrose Conference Report - Origin and Evolution of Anorthosites and related rocks. Geology, 17, 474-475.
  • 25. Gawęda, A., Krzemińska, E. and Wiszniewska, J. 2009. A-type granites in the Mazury Complex - contribution to worldwide discussion on granite classification. Przegląd Geologiczny, 57, 478-485. [In Polish]
  • 26. Juskowiak, O. 1998. Occurrence, structure and mineral diversity of rocks from the Suwałki anorthosite massif. In: Ryka W. and Podemski M. (Eds), Geology of the Suwałki Anorthosite Massif (northeastern Poland). Prace Państwowego Instytutu Geologiczego, 61, 53-80.
  • 27. Kubicki, S. and Ryka, W. 1982. Geological Atlas of Crystalline Basement in Polish Part of East European Platform. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 28. Longhi, J., Vander Auwera, J., Fram, M. and Duchesne, J.C. 1999. Some phase equilibrium constraints on the origin of Proterozoic (Massif) anorthosites and related rocks. Journal of Petrology, 40, 339-362.
  • 29. Middlemost, E.A. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37, 215-224.
  • 30. Morgan, J.W., Stein, H.J., Hannah, J.L., Markey, R.J. and Wiszniewska, J. 2000. Re-Os study of Fe-Ti-V oxide and Fe-CuNi sulfide deposits, Suwałki anorthosite massif, northeast Poland. Mineralium Deposita, 35, 391-401.
  • 31. Nekvasil, H. and Burnham, C.W. 1987. The calculated individual effects of pressure and water content on phase equilibria in the granite system. In: Mysen, B.O. (Ed.), Magmatic processes: Physicochemical Principles. The Geochemical Society Special Publication, 1, 433-445.
  • 32. Owens, B.E., Rockow, M.W. and Dymek, R.F. 1993. Jotunites from the Grenville Province, Quebec: petrological characteristics and implications for massif anorthosite petrogenesis. Lithos, 30, 57-80.
  • 33. Philpotts, A.R. 1981. A model for the generation of massif-type anorthosites. The Canadian Mineralogist, 19, 233-253.
  • 34. Ryka, W. 1993. Crystalline basement of Suwalszczyzna (NE Poland). Przegląd Geologiczny, 41, 546-551. [In Polish]
  • 35. Ryka, W. 1998. Geological position of the Suwałki Anorthosite Massif. In: Ryka, W. and Podemski, M. (Eds), Geo logy of the Suwałki Anorthosite Massif (northeastern Poland). Prace Państwowego Instytutu Geologiczego, 61, 39-45.
  • 36. Schärer, U., Wilmart, E. and Duchesne, J.C. 1996. The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. Earth and Planetary Science Letters, 139, 335-350.
  • 37. Shumlyanskyy, L., Hawkesworth, C., Billström, K., Bogdanova, S., Mytrokhyn, O., Romer, R., Dhuime, B., Cleasson, S., Ernst, R., Whitehouse, M. and Bilan, O. 2017. The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Research, 292, 216-239.
  • 38. Stein, H.J., Morgan, J.W., Markey, R.J. and Wiszniewska, J. 1998. A Re-Os study of the Suwałki anorthosite massif, northeast Poland. Geophysical Journal, 4, 11-114.
  • 39. Streckeisen, A. 1974. How should charnockitic rocks be named? In: Bellière, J. and Duchesne, J.C. (Eds), Géologie Des Domaines Cristallins, pp. 349-360. Société Géologique de Belgique; Liège.
  • 40. Taylor, S.R., Campbell, I.H., McCulloch, M.T. and McLennan, S.M. 1984. A lower crustal origin for massif-type anorthosites. Nature, 311 (5984), 372-374.
  • 41. Thompson, R.N., Dickin, A.P., Gibson, I.L., Morrison, M.A. 1982. Elemental fingerprints of isotopic contamination of Hebridean Palaeocene mantle-derived magmas by Archaean sial. Contributions to Mineralogy and Petrology, 79, 159-168.
  • 42. Vander Auwera, J. and Longhi, J. 1994. Experimental study of a jotunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P, T, fO2) of the Bjerkreim-Sokndal layered intrusion. Contributions to Mineralogy and Petrology, 118, 60-78.
  • 43. Vander Auwera, J., Longhi, J. and Duchesne, J.C. 1998. A liquid line of descent of the jotunite (hypersthene monzodiorite) suite. Journal of Petrology, 39, 439-468.
  • 44. Wiszniewska, J., Claesson, S., Stein, H., Vander Auwera, J. and Duchesne, J.C. 2002. The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova, 14, 451-460.
  • 45. Wiszniewska, J. and Krzemińska, E. 2005. Precambrian Crystalline basement of northeastern Poland - new approach. Mineralogical Society of Poland - Special Papers, 26, 97-104.
  • 46. Wiszniewska, J. and Petecki, Z. 2014. A Mesoproterozoic titanomagnetite ore deposit in the Suwałki Anorthosite Massif and its geological environment. Górnictwo Odkrywkowe, 55, 44-51. [In Polish].
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb8f269-262e-43bd-866d-adfb4794dc61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.