PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antimicrobial materials properties based on ion-exchange 4A zeolite derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zeolites are nanoporous alumina silicates in a framework with cations, exhibiting ion-exchange properties with metal ions making them possible antimicrobial materials. The aim of this study was to evaluate the antimicrobial activity of ion-exchanged zeolites and the toxic potential of these materials. Zeolite-Co2+ and Li+ exhibited the most effective inhibition on Staphylococcus aureus growth than in other microorganisms (Escherichia coli and Pseudomonas aeroginosa) in low concentrations. Zeolite-Cu2+ presented higher zone of inhibition when tested against Candida albicans, while Zeolite-Zn2+ showed similar effectiveness among all the microorganisms. When ion-exchanged zeolites were used in effective concentrations to achieve antimicrobial activity, no alterations against bioindicators organisms as Artemia sp. and L. sativa were found and, in addition, they have non-significant result in terms of DNA cleavage activity. Zeolites have advantage of releasing slowly the metals loaded and this characteristic can to be considered promising as potential antimicrobial materials in concentrations safe for use.
Słowa kluczowe
Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Universidade do Extremo Sul Catarinense – Rodovia Governador Jorge Lacerda, Km 4,5, Sangão, CEP: 88806-000, Criciúma, Santa Catarina, Brasil
  • Universidade do Extremo Sul Catarinense – Rodovia Governador Jorge Lacerda, Km 4,5, Sangão, CEP: 88806-000, Criciúma, Santa Catarina, Brasil
  • Universidade do Extremo Sul Catarinense – Rodovia Governador Jorge Lacerda, Km 4,5, Sangão, CEP: 88806-000, Criciúma, Santa Catarina, Brasil
  • Bairro Universitário, Faculdade SATC - Rua Pascoal Meller, 73, CEP 88805-380, Criciúma, Santa Catarina, Brasil
  • Universidade do Extremo Sul Catarinense – Rodovia Governador Jorge Lacerda, Km 4,5, Sangão, CEP: 88806-000, Criciúma, Santa Catarina, Brasil
  • Universidade Federal de Santa Catarina, Centro de Ciências, Techologias e Saúde: Departamento de Energia e Sustentabilidade; Rod Gov. Jorge Lacerda 3201: CEP 88906-072, Araranguá, Santa Catarina
  • Universidade Federal de Santa Catarina, Centro de Ciências, Techologias e Saúde: Departamento de Energia e Sustentabilidade; Rod Gov. Jorge Lacerda 3201: CEP 88906-072, Araranguá, Santa Catarina
autor
  • Universidade do Extremo Sul Catarinense – Rodovia Governador Jorge Lacerda, Km 4,5, Sangão, CEP: 88806-000, Criciúma, Santa Catarina, Brasil
  • Universidade do Extremo Sul Catarinense – Rodovia Governador Jorge Lacerda, Km 4,5, Sangão, CEP: 88806-000, Criciúma, Santa Catarina, Brasil
Bibliografia
  • 1. Boschetto D.L. Lerin L. Cansian R. Pergher S.B.C. & Di Luccio M. (2012). Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem. Eng. J. 204 210–216. http://dx.doi.org/10.1016/j.cej.2012.07.111
  • 2. Sánchez M.J. Mauricio J.E. Paredes A.R. Gamero P. & Cortés D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Mater. Lett. 191 65–68. http://dx.doi.org/10.1016/j.matlet.2017.01.039
  • 3. Gazzotti S. Todisco S.A. Picozzi C. Ortenzi M.A. Farina H. Lesma G. & Silvani A. (2019). Eugenol-grafted aliphatic polyesters: Towards inherently antimicrobial PLA-based materials exploiting OCAs chemistry. Eur. Polym. J. 114 369–379. https://doi.org/10.1016/j.eurpolymj.2019.03.001
  • 4. Turalija M. Bischof S. Budimir A. & Gaan S. (2016). Antimicrobial PLA films from environment friendly additives. Compos. Part B: Engin. 102 94–99. https://doi.org/10.1016/j.compositesb.2016.07.017
  • 5. Braunwarth H. & Brill F.H.H. (2014). Antimicrobial efficacy of modern wound dressings: Oligodynamic bactericidal versus hydrophobic adsorption effect. Wound Medicine. 5 16–20. http://dx.doi.org/10.1016/j.wndm.2014.04.003
  • 6. Breck D.W. (1984). Zeolite molecular sieves: structure chemistry and use ed (Universidade de Michigan) pp. 771.
  • 7. McCusker L.B. Olson D.H. & Baerlocher C. (2007). Atlas of Zeolite Framework Types 6ª ed (Elsevier Science). ISBN: 978-0-444-53064-6.
  • 8. Kulprathipanja S. (2010). Zeolites in Industrial Separation and Catalysis. pp. 618. Wiley.
  • 9. Melo C.R. Riella H.G. Kuhnen N.C. Angioletto E. Melo A.R. Bernardin A.M. da Rocha M.R. & da Silva L. (2012). Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater. Sci. Engin. B. 177(4) 345–349. http://dx.doi.org/10.1016/j.mseb.2012.01.015
  • 10. Rivera-Garza M. Olguín M.T. García-Sosa I. Alcántara D. & Rodríguez-Fuentes G. (2000). Silver supported on natural Mexican zeolite as an antibacterial material. Micropor. Mesopor. Mat. 39(3), 431–444. http://dx.doi.org/10.1016/S1387-1811(00)00217-1
  • 11. Tekin R. & Bac N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Micropor. Mesopor. Mat. 234. 55–60. http://dx.doi.org/10.1016/j.micromeso.2016.07.006
  • 12. Ferreira L. Fonseca A.M. Botelho G. Aguiar C.A. & Neves I.C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Micropor. Mesopor. Mat. 160. 126–132. http://dx.doi.org/10.1016/j.micromeso.2012.05.006
  • 13. Fang M. Chen J.H. Xu X.L. Yang P.H. & Hildebrand H.F. (2006). Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents. 27(6) 513–517. http://dx.doi.org/10.1016/j.ijantimicag.2006.01.008
  • 14. Kalinowska M. Piekut J. Bruss A. Follet C. Sienkiewicz-Gromiuk J. Świsłocka R. Rzączyńska Z. & Lewandowski W. (2014). Spectroscopic (FT-IR FT-Raman 1H 13C NMR UV/VIS) thermogravimetric and antimicrobial studies of Ca(II) Mn(II) Cu(II) Zn(II) and Cd(II) complexes of ferulic acid. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 122, 631–638. http://dx.doi.org/10.1016/j.saa.2013.11.089
  • 15. Zhang B. Lin Y. Tang X. He S. & Xie G. (2010). Synthesis characterization and antimicrobial properties of Cu-inorganic antibacterial material containing lanthanum. J. Rare Earths. 28 451–455. http://dx.doi.org/10.1016/S1002-0721(10)60346-8
  • 16. Savi G.D. Cardoso W.A. Furtado B.G. Bortolotto T. Da Agostin L.O.V. Nones J. Zanoni E.T. Montedo O.R.K. & Angioletto E. (2017). New ion-exchanged zeolite derivatives: Antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1. Mat. Res. Exp. 4 085401. http://dx.doi.org/10.1088/2053-1591/aa84a5
  • 17. CLSI (2009). Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Pennsylvania USA. Wayne.
  • 18. Balouiri M. Sadiki M. & Ibnsouda S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharmaceut. Anal. 6(2) 71–79. http://dx.doi.org/10.1016/j.jpha.2015.11.005
  • 19. Santos M.F. Oliveira C.M. Tachinski C.T. Fernandes M.P. Pich C.T. Angioletto E. Riella H.G. & Fiori M.A. (2011). Bactericidal properties of bentonite treated with Ag+ and acid. Int. J. Miner. Process. 100(1) 51–53. http://dx.doi.org/10.1016/j.minpro.2011.04.012
  • 20. Rajabi S. Ramazani A. Hamidi M. & Naji T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU J. Pharm. Sci. 23(1) 20. http://dx.doi.org/10.1186/s40199-015-0105-x
  • 21. Brix K.V. Gerdes R.M. Adams W.J. & Grosell M. (2006). Effects of copper cadmium and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch. Environ. Contam. Toxicol. 51(4), 580–583. http://dx.doi.org/10.1007/s00244-005-0244-z
  • 22. Charles J. Sancey B. Morin-Crini N. Badot P.-M. Degiorgi F. Trunfio G. & Crini G. (2011). Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol. Environ. Saf. 74(7) 2057–2064. https://doi.org/10.1016/j.ecoenv.2011.07.025
  • 23. Netto E. Madeira R.A. Silveira F.Z. Fiori M.A. Angioleto E. Pich C.T. & Geremias R. (2013). Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays. Environ. Toxicol. Pharmacol. 35(3) 511–516. http://dx.doi.org/10.1016/j.etap.2013.02.007
  • 24. Luna F.J. & Schuchardt U. (2001). Modificação de zeólitas para uso em catálise. Quim. Nova. 24 885–892.
  • 25. Demirci S. Ustaoglu Z. Yilmazer G.A. Sahin F. & Bac N. (2014). Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver copper and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 172(3) 1652–1662. http://dx.doi.org/10.1007/s12010-013-0647-7
  • 26. Tapiero H. & Tew K.D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57(9) 399–411.
  • 27. Alswat A.A. Ahmad M.B. Hussein M.Z. Ibrahim N.A. & Saleh T.A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 33(8) 889–96. http://dx.doi.org/10.1016/j.jmst.2017.03.015
  • 28. Fanta F.T. Dubale A.A. Bebizuh D.F. & Atlabachew M. (2019). Copper doped zeolite composite for antimicrobial activity and heavy metal removal from waste water. BMC Chemistry. 13(1) 44. http://dx.doi.org/10.1186/s13065-019-0563-1
  • 29. Aguado S. Quirós J. Canivet J. Farrusseng D. Boltes K. & Rosal R. (2014). Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere. 113 188–192. http://dx.doi.org/10.1016/j.chemosphere.2014.05.029
  • 30. Savi G.D. Cardoso W.A. Furtado B.G. Bortolotto T. Zanoni E.T. Scussel R. Rezende L.F. Avila R.A.M. Montedo O.R.K. & Angioletto E. (2018). Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites. J. Environ. Sci. Health Part B 53(3): 184–190. http://dx.doi.org/10.1080/03601234.2017.1405639.
  • 31. Tamayo L. Azócar M. Kogan M. Riveros A. & Páez M. (2016). Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater. Sci. Engin.: C. 69 1391–1409. http://dx.doi.org/10.1016/j.msec.2016.08.041
  • 32. Savi G.D. Bortoluzzi A.J. & Scussel V.M. (2013). Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol. 48(9), 1834–1840. http://dx.doi.org/10.1111/ijfs.12158
  • 33. Vitorino H.A. Mantovanelli L. Zanotto F.P. & Esposito B.P. (2015). Iron metallodrugs: stability redox activity and toxicity against Artemia salina. PLoS One. 10(4) e0121997. http://dx.doi.org/10.1371/journal.pone.0121997
  • 34. Arulvasu C. Jennifer S.M. Prabhu D. & Chandhirasekar D. (2014). Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci. World J.2014 256919. http://dx.doi.org/10.1155/2014/256919
  • 35. Bortolotto T. Bertoldo J.B. da Silveira F.Z. Defaveri T.M. Silvano J. & Pich C.T. (2009). Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays. Environ. Toxicol. Pharmacol. 28(2) 288–293. http://dx.doi.org/10.1016/j.etap.2009.05.007
  • 36. Rodrigues L.C.d.A. Barbosa S. Pazin M. Maselli B.d.S. Beijo L.A. & Kummrow F. (2013). Fitotoxicidade e citogenotoxicidade da água e sedimento de córrego urbano em bioensaio com Lactuca sativa. Rev. Bras. Eng. Agríc. 17 1099–1108.
  • 37. Angele-Martinez C. Nguyen K.V. Ameer F.S. Anker J.N. & Brumaghim J.L. (2017). Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology. 11(2) 278–288. http://dx.doi.org/10.1080/17435390.2017.1293750
  • 38. Wang F. & Sayre L.M. (1989). Oxidation of tertiary amine buffers by copper(II). Inorg. Chem. 28(2) 169–170. http://dx.doi.org/10.1021/ic00301a001
  • 39. Tachon P. (1989). Ferric and cupric ions requirement for DNA single-strand breakage by H2O2. Free Radic. Res. Commun. 7(1) 1–10.
  • 40. Burrows C.J. & Muller J.G. (1998). Oxidative Nucleobase Modifications Leading to Strand Scission. Chem. Rev. 98(3) 1109–1152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb7df3f-dc9d-4d9a-a182-7fc0eaf105a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.