Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The economic development of EU countries is limited due to limited access to a number of mineral raw materials, which necessitates actions aimed at securing the supply of CRM. For this reason, CRMs constitute elements of particular importance for the EU. The aim of the study was to assess the content of CRMs as a potential source of REY in fly ash resulting from the coal combustion in one of the power plants in the Czech Republic. In the tested ash the main phases are: glassy phase, mullite and quartz. The chemical composition of the tested fly ashes showed dominance of SiO2 and Al2O3. The CRM included Co, Sb, W, Be, Nb, Ga, lanthanides and Y, as well as Cr and In. Light elements have the largest share among REE, while heavy elements have the smallest share. In the tested fly ash, the share of critical elements, the content of uncritical elements and the content of excessive elements in the total REY content were also determined. Based on the analyzed results, the value of the Coutl prospective coefficient was calculated, which assesses the profitability of obtaining CRM from fly ash as an alternative source of these metals.
Wydawca
Czasopismo
Rocznik
Tom
Strony
261--269
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Central Mining Institute - National Research Institute, Department of Environmental Monitoring, Poland
Bibliografia
- [1] Huang Q, Noble A, Herbst J, Honaker R. Liberation and release of rare earth minerals from Middle Kittanning, Fire Clay, and West Kentucky No. 13 coal sources. Powder Technol 2018;332: 242-52. https://doi.org/10.1016/j.powtec.2018.03.063.
- [2] Zhang W, Honaker R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample. Fuel 2020;267:117236. https://doi.org/10.1016/j.fuel.2020.117236.
- [3] Zhang W, Honaker R, Groppo J. Concentration of rare earth minerals from coal by froth floatation. Miner Metall Process 2017;34:132-7.
- [4] RMIS - Raw Materials Information System, [rmis.jrc.ec.europa.eu].
- [5] COM. 160 final pn. Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (Annex II, Section 1). 2023. https://single-marketeconomy.ec.europa.eu/publications/european-critical-raw-materials-act_en.
- [6] Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/ 2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020, Brussels. 2023. 16127/23.
- [7] Kurama H, Kaya M. Usage of coal combustion bottom ash in concrete mixture. Construct Build Mater 2008;22:1922-8. https://doi.org/10.1016/j.conbuildmat.2007.07.008.
- [8] Adamczyk Z, Cempa M, Białecka B. The influence of ultrasound on fly ash zeolitisation process efficiency. Process Extract Metal Rev 2022;43(4):427-39. https://doi.org/10.1080/08827508.2021.1897585.
- [9] Klupa A. Determination of properties of clean coal technology post-process residue. J Sustain Mining 2016;15/4:1-8. https://doi.org/10.1016/j.jsm.2017.03.002.
- [10] Mondragon F, Rincon F, Sierra L, Escobar J, Ramirez J, Fernandez J. New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel 1990;69:263-6. https://doi.org/10.1016/0016-2361(90)90187-U.
- [11] Dai S, Zhao L, Peng S, Chou CLL, Wang X, Zhang Y, et al. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int J Coal Geol 2010;81:320-32. https://doi.org/10.1016/j.coal.2009.03.005.
- [12] Seredin V, Finkelman RB. Metalliferous coals: a review of the main genetic and geochemical types. Int J Coal Geol 2008; 76(4):253-89. https://doi.org/10.1016/j.coal.2008.07.016.
- [13] Hower JC, Groppo JG, Henke K, Hood MM, Eble CF, Honaker RQ, et al. Notes on the potential for the concentration of rare earth elements and yttrium in coal combustion fly ash. Minerals 2015;5:356-66. https://doi.org/10.3390/min5020356.
- [14] Eskenazy GM. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org Geochem 1987;11:83-9. https://doi.org/10.1016/0146-6380(87)90030-1.
- [15] Finkelman RB, Brown RD, Peters DC. Coal as a Host and as an indicator of mineral resources. Geology in coal resource utilization. TechBooks 1991:471-81.
- [16] Hower JC, Granite EJ, Mayfield DB, Lewis AS, Finkelman RB. Notes on contributions to the science of rare earth element enrichment in coal and coal combustion byproducts. Minerals 2016;6(2):32. https://doi.org/10.3390/min6020032.
- [17] Querol X, Fernandez-Turiel J, Lopez-Soler A. Trace elements in coal and their behavior during combustion in a large power station. Fuel 1995;74(3):331-43. https://doi.org/10.1016/0016-2361(95)93464-O.
- [18] Hower JC, Eble CF, Dai S, Belkin HE. Distribution of rare earth elements in eastern Kentucky coals: indicators of multiple modes of enrichment? IntJ Coal Geol 2016;160-161: 73-81. https://doi.org/10.1016/j.coal.2016.04.009.
- [19] Seredin V, Dai S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int J Coal Geol 2012;94: 67-93.
- [20] Dai S, Chekryzhov IY, Seredin V, Nechaev VP, Graham IT, Hower JC, et al. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): a review of geodynamic controls and styles of mineralization. Gondwana Res 2016;29:60-82. https://doi.org/10.1016/j.gr.2015.07.001.
- [21] Folgueras MB, Alonso M, Fernandez FJ. Coal and sewage sludge ashes as sources of rare earth elements. Fuel 2017;192: 128-39. https://doi.org/10.1016/j.fuel.2016.12.019.
- [22] Lin R, Howard BH, Roth EA, Bank TL, Granite EJ, Soong Y. Enrichment of rare earth elements from coal and coal byproducts by physical separations. Fuel 2017;200:506-20. https://doi.org/10.1016/j.fuel.2017.03.096.
- [23] Xie P, Zhang S, Wang Z, Wang L, Xu Y. Geochemical characteristics of the late permian coals from the yueliangtian coalfield, western guizhou, southwestern China. Arabian J Geosci 2017;10:98. https://doi.org/10.1007/s12517-017-2916-1.
- [24] Klupa A, Adamczyk Z, Harat A. Spinels in the fly ash of power plant rybnik (Poland). In: 17th international multidisciplinary scientific GeoConference SGEM 2017; 2017. p. 1051-8. 17/11.
- [25] Recovering and Producing Scandium and Rare Earths from Coal Deposits-International Mining. Available online: https://im-mining.com/2016/12/23/recovering-producing-scandium-rare-earths-coaldeposits/(accessed on 17 May 2020).
- [26] Klupa A, Adamczyk Z, Harat A. Lanthanides in mineral elements found in fly ashes from the Rybnik Power Plant. In: 17th International Multidisciplinary Scientific GeoConference SGEM 2017; 2017. p. 883-8. 17/11.
- [27] Bielowicz B. Ash characteristics and selected critical elements (Ga, Sc, V) in coal and ash in polish deposits. Resources 2020;9:115. https://doi.org/10.3390/resources9090115.
- [28] Klupa A, Adamczyk Z. Spinels in the fly ash of power plant ostroleka (Poland). In: 18th International Multidisciplinary Scientific GeoConference SGEM. 2018; 2018. p. 163-70. 18/ 1.4.
- [29] Fu B, Hover CJ, Zhang W, Luo G, Hu H, Yao H. A review of rare earth elements and yttrium in coal ash: content, modes of occurrences, combustion behavior, and extraction methods. Prog Energy Combust Sci 2022;88. https://doi.org/10.1016/j.pecs.2021.100954.
- [30] Bielowicz B, Botor D, Misiak J, Wagner M. Critical elements in fly ash from the combustion of bituminous coal in major polish power plants. In: E3S web of conferences. vol. 35. France: EDP Sciences: Les Ulis; 2018.
- [31] Adamczyk Z, Komorek J, Lewandowska M, Nowak J, Białecka B, Całus Moszko J, et al. Ashes from bituminous coal burning in fluidized bed boilers as a potential source of rare earth elements. Gospodarka Surowcami Mineralnymi - Mineral Resour Manage 2018;34/2:21-36. https://doi.org/10.24425/118652.
- [32] Kolker A, Hower JC, Karamalidis AK. Introduction to critical elements in coal and coal ash and their recovery, a virtual special issue. Int J Coal Geol 2019;206:19-20. https://doi.org/10.1016/j.coal.2019.03.001.
- [33] Adamczyk Z, Komorek J, Białecka B, Nowak J, Klupa A. Assessment of the potential of polish fly ashes as a source of rare earth elements. Ore Geol Rev 2020;124:103638. https://doi.org/10.1016/j.oregeorev.2020.103638.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb77ac3-4b3a-49b6-b0f8-f94ae4cd8763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.