Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Greenhouse gases (GHGs) cause global warming and climate change, making their emission and synthesis a global issue. Employing a pilot-scale scrubber packed with a Rashing ring randomly, where experimentally examined the absorption performance of carbon dioxide capturing by using an aqueous solvent of primary and poly alkanol amines; the investigations on carbon dioxide capturing were carried out at atmospheric pressure (1 atm), using simulated feed gas of carbon dioxide balanced with nitrogen. Monoethanolamine, Triethylenetetramine, and Diethylenetriamine are the primary and poly alkanol amine absorbents examined for this work. The impact of operating conditions, including amine inlet concentrations, liquid flow rates, gas flow rate, lean amine loading, inlet carbon dioxide concentration, absorbent temperature, and alkanol amine type, were examined according to the two-film concept. Regarding the removal of carbon dioxide efficiency and volumetric mass transfer coefficient based on the gas side, the absorption performance was presented. A lab-scale investigation revealed that employing DETA absorbent possesses higher carbon dioxide removal efficiency of up to 28.9% and a higher coefficient of mass transfer of up to 165.7% in comparison to conventional MEA absorbent while employing TETA absorbent possesses higher carbon dioxide removal efficiency of up to 18.86% and higher coefficient of mass transfer of up to 69.64% in comparison to the conventional MEA absorbent. Based on these findings, it is reasonable to assume that DETA would serve as an efficient chemical absorbent for the removal of carbon dioxide.
Czasopismo
Rocznik
Tom
Strony
14--29
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Chemical Engineering Department, University of Baghdad, Baghdad, Iraq
autor
- Chemical Engineering Department, University of Baghdad, Baghdad, Iraq
Bibliografia
- 1. Cao, Y., Seyed Alizadeh, S.M., Fouladvand, M.T., Khan, A., Taghvaie Nakhjiri, A., Heidari, Z., Pelalak, R., Kurniawan, T.A., Albadarin, A.B. 2021. Mathematical modeling and numerical simulation of CO2 capture using MDEA-based nanofluids in nanostructure membranes. Process Safety and Environmental Protection, 148, 1377–1385. https://doi.org/10.1016/j.psep.2021.03.007
- 2. Al-Obaidi, D.A., Al-Mudhafar, W.J., Al-Jawad, M.S. (2022). Experimental evaluation of Carbon Dioxide-Assisted Gravity Drainage process (CO2-AGD) to improve oil recovery in reservoirs with strong water drive. Fuel, 324, 124409. https://doi.org/10.1016/j.fuel.2022.124409.
- 3. Cheage Chamgoué, A., Kombou, C.L., Tchouate Ngankap, M., Metsebo, J., Armstrong Akoteh, A. (2023). Improving the Recovery of Hydrocarbons in a Well in the Gullfaks Field by Injecting Sequestrated CO2. Iraqi Journal of Chemical and Petroleum Engineering, 24(1), 1–4. https://doi.org/10.31699/ijcpe.2023.1.1
- 4. Hason, M.M., Al-Sulttani, A.O., Abbood, I.S., Hanoon, A.N. 2020. Emissions Investigating of Carbon Dioxide Generated by the Iraqi Cement Industry. IOP Conference Series: Materials Science and Engineering, 928(2), 022041. https://doi.org/10.1088/1757-899x/928/2/022041
- 5. Orozco-Agamez, J., Tirado, D., Umana, L., Alviz-Meza, A., Garcia, S., Pena-Ballesteros, D. 2022. Effects of Composition, Structure of Amine, Pressure and Temperature on CO2 Capture Efficiency and Corrosion of Carbon Steels Using Amine-based Solvents: a Review. Chemical Engineering Transactions, 96, 505-510.
- 6. Majeed, N.S., Majeed, J.T. 2017. Study the Performance of Nanozeolite NaA on CO2 Gas Uptake. Iraqi Journal of Chemical and Petroleum Engineering, 18(2), 57–67. https://doi.org/10.31699/IJCPE.2017.2.5.
- 7. Yaro, A.S., Rashid, K.H. 2016. Modelling and Optimization of Carbon Steel Corrosion in CO2 Containing Oilfield Produced Water in Presence of HAc. Iraqi Journal of Chemical and Petroleum Engineering, 16(2), 1–8. https://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/249
- 8. AL-Sammarraie, A.M. 2020. Role of Carbon Dioxide on the Corrosion of Carbon Steel Reinforcing Bar in Simulating Concrete Electrolyte. Baghdad Science Journal, 17(1), 0093. https://doi.org/10.21123/bsj.2020.17.1.0093
- 9. Hadi Jasim, H. 2019. Evaluation the Effect of Velocity and Temperature on the Corrosion Rate of Crude Oil Pipeline in the Presence of CO2/H2S Dissolved Gases. Iraqi Journal of Chemical and Petroleum Engineering, 20(2), 41–50. https://doi.org/10.31699/ijcpe.2019.2.6
- 10. Sang Sefidi, V., Luis, P. 2019. Advanced Amino Acid-Based Technologies for CO2 Capture: A Review. Industrial & Engineering Chemistry Research, 58(44), 20181–20194. https://doi.org/10.1021/acs.iecr.9b01793
- 11. Scholes, C.A., Smith, K.H., Kentish, S.E., Stevens, G.W. 2010. CO2 capture from pre-combustion processes—Strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 4(5), 739–755. https://doi.org/10.1016/j.ijggc.2010.04.001
- 12. Helei, L., Tantikhajorngosol, P., Chan, C., Tontiwachwuthikul, P. 2021. Technology development and applications of artificial intelligence for postcombustion carbon dioxide capture: Critical literature review and perspectives. International Journal of Greenhouse Gas Control, 108, 103307. https://doi.org/10.1016/j.ijggc.2021.103307
- 13. Yin, C., Yan, J. 2016. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Applied Energy, 162, 742–762. https://doi.org/10.1016/j.apenergy.2015.10.149
- 14. Theo, W.L., Lim, J.S., Hashim, H., Mustaffa, A.A., Ho, W.S. 2016. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 183, 1633–1663. https://doi.org/10.1016/j.apenergy.2016.09.103
- 15. Waisi, B.I., Majeed, J.T., Majeed, N.S. 2021. Carbon dioxide capture using nonwoven activated carbon nanofiber. IOP Conference Series: Earth and Environmental Science, 779(1), 012056. https://doi.org/10.1088/1755-1315/779/1/012056
- 16. Vega, F., Cano, M., Gallego, L.M., Camino, S., Camino, J.A., Navarrete, B. 2017. Evaluation of MEA 5 M performance at different CO2 concentrations of flue gas tested at a CO2 capture lab-scale plant. Energy Procedia, 114, 6222–6228. https://doi.org/10.1016/j.egypro.2017.03.1760
- 17. Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J. 2012. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630–671. https://doi.org/10.1016/j.pecs.2012.03.003
- 18. Chu, F., Yang, L., Du, X., Yang, Y. 2016. CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns. Energy, 109, 495–505. https://doi.org/10.1016/j.energy.2016.04.123
- 19. Dash, S.K., Parikh, R., Kaul, D. 2022. Development of efficient absorbent for CO2 capture process based on (AMP + 1MPZ). Materials Today: Proceedings, 62, 7072–7076. https://doi.org/10.1016/j.matpr.2022.01.148
- 20. Luo, X., Fu, K., Yang, Z., Gao, H., Rongwong, W., Liang, Z., Tontiwachwuthikul, P. 2015. Experimental Studies of Reboiler Heat Duty for CO2 Desorption from Triethylenetetramine (TETA) and Triethylenetetramine (TETA) + N-Methyldiethanolamine (MDEA). Industrial & Engineering Chemistry Research, 54(34), 8554–8560. https://doi.org/10.1021/acs.iecr.5b00158
- 21. Husebye, J., Brunsvold, A.L., Roussanaly, S., Zhang, X. 2012. Techno Economic Evaluation of Amine based CO2 Capture: Impact of CO2 Concentration and Steam Supply. Energy Procedia, 23, 381–390. https://doi.org/10.1016/j.egypro.2012.06.053
- 22. Roussanaly, S., Berghout, N., Fout, T., Garcia, M., Gardarsdottir, S., Nazir, S.M., Ramirez, A., Rubin, E.S. 2021. Towards improved cost evaluation of Carbon Capture and Storage from industry. International Journal of Greenhouse Gas Control, 106, 103263. https://doi.org/10.1016/j.ijggc.2021.103263
- 23. Baker, R.W., Freeman, B., Kniep, J., Huang, Y.I., Merkel, T.C. 2018. CO2 Capture from Cement Plants and Steel Mills Using Membranes. Industrial & Engineering Chemistry Research, 57(47), 15963–15970. https://doi.org/10.1021/acs.iecr.8b02574
- 24. Wilk, A., Więcław-Solny, L., Tatarczuk, A., Krótki, A., Spietz, T., Chwoła, T. 2017. Solvent selection for CO2 capture from gases with high carbon dioxide concentration. Korean Journal of Chemical Engineering, 34(8), 2275–2283. https://doi.org/10.1007/s11814-017-0118-x
- 25. Madugula, A.C.S., Sachde, D., Hovorka, S.D., Meckel, T.A., Benson, T.J. 2021. Estimation of CO₂ emissions from petroleum refineries based on the total operable capacity for carbon capture applications. Chemical Engineering Journal Advances, 8, 100162. https://doi.org/10.1016/j.ceja.2021.100162
- 26. Wang, X., Song, C. 2020. Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Frontiers in Energy Research, 8. https://doi.org/10.3389/fenrg.2020.560849
- 27. Saha, A.K., Bandyopadhyay, S.S., Biswas, A.K. 1995. Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 50(22), 3587–3598. https://doi.org/10.1016/0009-2509(95)00187-a
- 28. Vaidya, P.D., Kenig, E.Y. 2007. CO2-Alkanolamine Reaction Kinetics: A Review of Recent Studies. Chemical Engineering & Technology, 30(11), 1467–1474. https://doi.org/10.1002/ceat.200700268
- 29. Caplow, M. 1968. Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society, 90(24), 6795–6803. https://doi.org/10.1021/ja01026a041
- 30. Sema, T., Naami, A., Liang, Z., Shi, H., Rayer, A.V., Sumon, K.Z., Wattanaphan, P., Henni, A., Idem, R., Saiwan, C., Tontiwachwuthikul, P. 2012. Part 5b: Solvent chemistry: reaction kinetics of CO2absorption into reactive amine solutions. Carbon Management, 3(2), 201–220. https://doi.org/10.4155/cmt.12.13
- 31. Aroonwilas, A., Veawab, A. 2004. Characterization and Comparison of the CO2 Absorption Performance into Single and Blended Alkanolamines in a Packed Column. Industrial & Engineering Chemistry Research, 43(9), 2228–2237. https://doi.org/10.1021/ie0306067
- 32. Nair, P.S., Selvi, P.P. 2014. Absorption of carbon dioxide in packed column. International journal of scientific and research publication, 4(4), 1–11.
- 33. Aroonwilas, A., Tontiwachwuthikul, P. 1998. Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing. Industrial & Engineering Chemistry Research, 37(2), 569–575. https://doi.org/10.1021/ie970482w
- 34. Gao, H., Xu, B., Han, L., Luo, X., Liang, Z. 2017. Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column. AIChE Journal, 63(7), 3048–3057. https://doi.org/10.1002/aic.15673
- 35. Naami, A., Edali, M., Sema, T., Idem, R., Tontiwachwuthikul, P. 2012. Mass Transfer Performance of CO2 Absorption into Aqueous Solutions of 4-Diethylamino-2-butanol, Monoethanolamine, and N-Methyldiethanolamine. Industrial & Engineering Chemistry Research, 51(18), 6470–6479. https://doi.org/10.1021/ie2008357
- 36. Vaewhongs, P., Photein, K., Nimchareon, R., Limlertchareonwanit, T., Minakanishtha, K., Maneeintr, K., Charinpanitkul, T. 2020. Gas-phase mass transfer coefficient of CO2 in different alkanolamine solutions within packed-bed absorption column. The second materials research society of thailand international conference. https://doi.org/10.1063/5.0023685
- 37. Sheng, M., Liu, C., Ge, C., Arowo, M., Xiang, Y., Sun, B., Chu, G., Zou, H. 2016. Mass-Transfer Performance of CO2 Absorption with Aqueous Diethylenetriamine-Based Solutions in a Packed Column with Dixon Rings. Industrial & Engineering Chemistry Research, 55(40), 10788–10793. https://doi.org/10.1021/acs.iecr.6b02280
- 38. Qedenv environmental systems ltd. (n.d.). geotechuk. Retrieved June 2, 2023, from https://www.qedenv.com/search/?q=biogas5000
- 39. Mustafa, N.F.A., Mohd Shariff, A., Tay, W.H., Abdul Halim, H.N., Mhd Yusof, S.M. 2020. Mass Transfer Performance Study for CO2 Absorption into Non-Precipitated Potassium Carbonate Promoted with Glycine Using Packed Absorption Column. Sustainability, 12(9), 3873. https://doi.org/10.3390/su12093873
- 40. Abdul Halim, H.N.M., Shariff, A., Tan, L.S., Bustam, M.A. 2015. Mass Transfer Performance of CO2 Absorption from Natural Gas using Monoethanolamine (MEA) in High Pressure Operations. Industrial & Engineering Chemistry Research, 54(5), 1675–1680. https://doi.org/10.1021/ie504024m
- 41. Limlertchareonwanit, T., Maneeintr, K., Charinpanitkul, T. 2020. Measurement of Mass Transfer Coefficient of CO2–Amine System from Absorption Process. IOP Conference Series: Materials Science and Engineering, 859(1), 012011. https://doi.org/10.1088/1757-899x/859/1/012011
- 42. Wen, L., Liu, H., Rongwong, W., Liang, Z., Fu, K., Idem, R., Tontiwachwuthikul, P. 2015. Comparison of Overall Gas-Phase Mass Transfer Coefficient for CO2 Absorption between Tertiary Amines in a Randomly Packed Column. Chemical Engineering & Technology, 38(8), 1435–1443. https://doi.org/10.1002/ceat.201400606
- 43. Gul, A., Tezcan Un, U. 2022. Effect of Temperature and Gas Flow Rate on CO2 Capture. European Journal of Sustainable Development Research, 6(2), em0181. https://doi.org/10.21601/ejosdr/11727
- 44. Al-Sudani, F. 2020. Absorption of Carbon Dioxide into Aqueous Ammonia Solution using Blended Promoters (MEA, MEA+PZ, PZ+ArgK, MEA+ArgK). Engineering and Technology Journal, 38(9), 1359–1372. https://doi.org/10.30684/etj.v38i9a.876
- 45. Kuntz, J., Aroonwilas, A. 2009, February. Masstransfer efficiency of a spray column for CO2 capture by MEA. Energy Procedia, 1(1), 205–209. https://doi.org/10.1016/j.egypro.2009.01.029
- 46. Rajiman, V., Halim, H.N.A., Shariff, A.M., Ali, U.F.M., Dzahir, M.I.H.M. 2021. Potential of 2-Amino-2-Methyl-1-Propanol Solution as Absorbent for CO2 Absorption from Biogas. IOP Conference Series: Earth and Environmental Science, 765(1), 012054. https://doi.org/10.1088/1755-1315/765/1/012054
- 47. Fu, K., Sema, T., Liang, Z., Liu, H., Na, Y., Shi, H., Idem, R., Tontiwachwuthikul, P. 2012. Investigation of Mass-Transfer Performance for CO2 Absorption into Diethylenetriamine (DETA) in a Randomly Packed Column. Industrial & Engineering Chemistry Research, 51(37), 12058–12064. https://doi.org/10.1021/ie300830h
- 48. Peng, Y., Zhao, B., Li, L. 2012. Advance in Post-Combustion CO2 Capture with Alkaline Solution: A Brief Review. Energy Procedia, 14, 1515–1522. https://doi.org/10.1016/j.egypro.2011.12.1126
- 49. Tan, L., Shariff, A., Lau, K., Bustam, M. 2012. Factors affecting CO2 absorption efficiency in packed column: A review. Journal of Industrial and Engineering Chemistry, 18(6), 1874–1883. https://doi.org/10.1016/j.jiec.2012.05.013
- 50. Demontigny, D., Tontiwachwuthikul, P., Chakma, A. 2001. Parametric studies of carbon dioxide absorption into highly concentrated monoethanolamine solutions. The Canadian Journal of Chemical Engineering, 79(1), 137–142. https://doi.org/10.1002/cjce.5450790121
- 51. Aroonwilas, A., Veawab, A., Tontiwachwuthikul, P. 1999. Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2 Absorbers with Chemical Reactions. Industrial & Engineering Chemistry Research, 38(5), 2044–2050. https://doi.org/10.1021/ie980728c
- 52. Najim, S.E., Ateik, A.A., Haweel, C.K. 2011. Effect of Operating Conditions on CO2 Absorption into Aqueous Alkanol amine Solutions in Packed Column. University of Thi-Qar Journal for Engineering Sciences, 2(1), 103–117.
- 53. Kim, Y.E., Moon, S.J., Yoon, Y.I., Jeong, S.K., Park, K.T., Bae, S.T., Nam, S.C. 2014. Heat of absorption and absorption capacity of CO2 in aqueous solutions of amine containing multiple amino groups. Separation and Purification Technology, 122, 112–118. https://doi.org/10.1016/j.seppur.2013.10.030
- 54. Bernhardsen, I.M., Knuutila, H.K. 2017. A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa. International Journal of Greenhouse Gas Control, 61, 27–48. https://doi.org/10.1016/j.ijggc.2017.03.021
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb672be-38b1-4e59-82fe-b1e712316928