PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Issues of biological and agricultural treatment of municipal sewage sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increase of sewage sludge production in Poland requires undertaking specific methods for their utilization and disposal. The reason is that sewage sludge, in addition to being rich in organic matter, and biogenic compounds such as nitrogen and phosphorus, which are beneficial from an agricultural point of view, also contain heavy metals, toxic organic pollutants such as persistent organic pollutants and polycyclic aromatic hydrocarbons, inorganic compounds such as silicates and clay, and pathogenic bacteria and other microbial contaminants. This implies problems with further use of such polluted sludge as fertilizer in agriculture. The aim of this paper is to analyze the possibilities and limitations of natural management of sewage sludge, taking into account their effects on the restoration and conservation of organic matter in the soil and the yielding of plants. In addition, the main methods of treatment of polluted sludge before introducing it into the environment are considered.
Twórcy
autor
  • European Regional Center for Ecohydrology of the Polish Academy of Sciences, ul. Tylna 3, 90-364 Łódź
  • Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Ul. Banacha 12/16, 90-237 Łódź
autor
  • Chair of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Ul. Banacha 12/16, 90-237 Łódź
  • European Regional Center for Ecohydrology of the Polish Academy of Sciences, ul. Tylna 3, 90-364 Łódź
  • Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Łódź, Ul. Banacha 12/16, 90-237 Łódź
autor
  • Institute of Crops, Fertilizers and Soil Science - National Research Institute, Ul. Czartoryskich 8, 24-100 Puław
autor
  • Institute of Crops, Fertilizers and Soil Science - National Research Institute, Ul. Czartoryskich 8, 24-100 Puławy
autor
  • Department of Physical Geography, Faculty of Geographical Sciences, University of Łódź, Ul. Narutowicza 88, 90-139 Łódź
autor
  • Institute of Crops, Fertilizers and Soil Science - National Research Institute, Ul. Czartoryskich 8, 24-100 Puławy
Bibliografia
  • [1] J. Bień, E. Neczaj , M. Worwąg, A. Grosser, D. Nowak, M. Milczarek, M. Janik, Kierunki zagospodarowania osadów w Polsce po roku 2013, Inżynieria i Ochrona Środowiska 14 (2011) 375-384.
  • [2] I. Dimitriou, H. Rosenqvist, P. Aronsson, Recycling of sludge and wastewater to Short Rotation Coppice in Europe - biological and economic potential. IEA Bioenergy Task 43 Report Series: 'Promising resources and systems for producing bioenergy feedstocks' 2011.
  • [3] Z. Sadecka, Suszenie Osadów - Hybrydowe? III National Training Conference Methods of sewage sludge management. Chorzów, 13-14 February 2012, 2012.
  • [4] J. Szczygieł, Energia z osadów ściekowych, Czysta energia 2004, 10, 34-35.
  • [5] B. Kronberger, Comment: Conference "Thermal transformation of sewage sludge" - Warsaw, December 12, 2006.
  • [6] J. Bieńkowski, J. Jankowiak, Ocena zrównoważonego funkcjonowania gospodarstw rolnych wielkopolski według kryteriów efektywności, Zeszyty Naukowe Akademii Rolniczej we Wrocławiu - Rolnictwo LXXXVII (2006) 57-64.
  • [7] T. Stuczyński (Ed.), S. Dobers, E. Czyż, L. Gawrysiak, H. Pidvalna, H. Kukla, R. Korzeniowska-Pucułek, J. Kozyra, J. Jadczyszyn, A. Łopatka, E. Nowocień, R. Pudełko, G. Siebielec, Wdrożenie zintegrowanego systemu informacji o rolniczej przestrzeni produkcyjnej dla potrzeb ochrony gruntów w województwie podlaskim, IUNG-PIB Puławy, 2006.
  • [8] G. Siebielec, T. Stuczyński, Metale śladowe w komunalnych osadach ściekowych wytwarzanych w Polsce, Proceedings of ECOpole 2 (2008) 479-484.
  • [9] Report of the Supreme Chamber of Control of the management of sludge generated in municipal sewage treatment plants in 2011-2012, LPO-4101-02-00/2013, Warsaw 2013.
  • [10] K. Tomczyk, Porównanie wpływu nawożenia wermikompostem powstałym na bazie komunalnego osadu ściekowego oraz komunalnym osadem ściekowym na biomasę roślin energetycznych i akumulację w nich wybranych metali ciężkich. Master thesis done at the Department of Applied Ecology, University of Łódź, under the direction of Prof. Maciej Zalewski, 2008.
  • [11] T. Stuczyński, G. Siebielec, W. Daniels, G. Mccarty, R. Chaney, Biological aspects of metal waste reclamation with biosolids, J. Environ. Qual. 36 (2007) 1154-1162.
  • [12] M.C. Antolín, I. Pascual, C. García, A. Polo, M. Sánchez-Díaz, Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions, Field Crops Research 94 (2005) 224-237.
  • [13] J.M. Fernández, C. Plaza, J.C. García-Gil, A. Polo, Biochemical properties and barley yield in a semiarid Mediterranean soil amended with two kinds of sewage sludge, Appl. Soil Ecol. 42 (2009) 18-24.
  • [14] M.C. Antolín, I. Muro, M. Sánchez-Díaz, Application of sewage sludge improves growth, photosynthesis and antioxidant activities of modulated alfalfa plants under drought conditions, Environ. Experim.Bot. 68 (2010) 75-82.
  • [15] M.C. Antolín I. Muro, M. Sánchez-Díaz, Sewage sludge application can induce changes in antioxidant status of nodulated alfalfa plants, Ecotoxicol. Environ. Safety 73 (2010) 436-442.
  • [16] P.D. Hare, W.A. Cress, J. Van Staden, Proline synthesis and degradation: a model system for elucidating stress-related signal transduction, J. Experiment. Botany 50 (1999) 413-434.
  • [17] H.Chiang, A. Dandekar, Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation, Plant Cell Environ. 18 (1995) 1280-1290.
  • [18] D.S. Shardendu, Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities, Ecotoxicol. Environ. Safety 95 (2013) 161-170.
  • [19] S.C. Wilson, R.E. Alcock, A.P. Sewart, K.C. Jones, Persistence of organic contaminants in sewage sludgeamended soil, a field experiment, J. Environ. Qual. 26 (1997) 1467-1477.
  • [20] C. Rappe, S. Bergek, H. Fiedler, K. Cooper, PCDD and PCDF contamination in catfish feed from Arkansas, USA, Chemosphere 36 (1998) 2705-2720.
  • [21] A. Stewart, S.J. Harrad, M.S. Mclachlan, S.P. Mcgrath, K.C. Jones, PCDD/Fs and non-o-PCBs in digested UK sewage sludges, Chemosphere 30 (1995). 51-67.
  • [22] E. Eljarrat, J. Caixach, J. Rivera, Decline in PCDD and PCDF levels in sewage sludges from Catalonia (Spain), Environ. Sci. Technol. 33 (1999) 2493-2498.
  • [23] M.R. Dudzińska, J. Czerwiński, PCDD/F levels in sewage sludge from MWTP in South-Eastern Poland, Organohalogen Comp 57 (2002) 305-308.
  • [24] S. Oleszek-Kudlak, M. Grabda, M. Czaplicka, Cz. Rosik-Dulewska, E. Shibata, N. Takashi, Fate of PCDD/PCDF Turing mechanical-biological sludge treatment, Chemosphere 62 (2005) 389-397.
  • [25] P. Oleszczuk, Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content. Chemosphere 67 (2007) 582-591.
  • [26] P. Oleszczuk, The Tenax fraction of PAHs relates to effects in sewage sludge, Ecotoxicol. Environ. Safety 72 (2009) 1320-1325.
  • [27] P. Oleszczuk, S.E. Hale, J. Lehamann, G. Cornelissen, Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge, Biores. Technol. 111 (2012) 84-91.
  • [28] M. Urbaniak, A. Drobniewska, M. Zalewski, Produkcja bioenergii i detoksykacja osadów ściekowych z wykorzystaniem ekohydrologii i technik fitoremediacyjnych. Katedra Ekologii Stosowanej Uniwersytet Łódzki, Łódź 2013, Issue I. W.06464.14.0.S.
  • [29] M.P. De Souza, D. Chu, M. Zhao, A.M. Zayed, S.E. Ruzin, D. Schichness, N. Terry, Rhizosphere bacteria enhance selenium accumulation and volatilisation by indian mustard, Plant Physiol. 119 (1999) 563-573.
  • [30] W.J. Fitz, W.W. Wenzel, Arsenic transformations in the soil /rhizosphere /plant system: fundamentals and potential application to phytoremediation, J. Biotech. 99 (2002) 259-278.
  • [31] A.J.M. Baker, R.R. Brooks, Terrestrial higher plants which heperaccumulatemetallic elements - a review of their distribution, ecology and phytochemistry, Biorecovery 1 (1989) 81-126.
  • [32] R.L Chaney, S.L. Brown, Y.M. Li, J.S. Angle, T.I. Stuczynski, W.L. Daniels, C.L. Henry, G. Siebielec, M. Malik, J.A. Ryan, H. Compton. 2001a. Progress in Risk Assessment for Soil Metals, and In-situ Remediation and Phytoextraction of Metals from Hazardous Contaminated Soils. Proc. US-EPA Conf. “Phytoremediation: State of the Science.” May 1-2, 2000, Boston, MA.
  • [33] C. Lomonte, A. Doronila, D. Gregory, A.J.M. Baker, S.D. Kolev, Chelate-assisted phytoextraction of mercury in biosolids, Sci. Tot. Environ. 409 (2011) 2685-2692.
  • [34] J. Vangronsveld, J.V. Colpaert, K.K. Van Tichelen, Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation, Environ. Pollut. 94 (1996) 131-140.
  • [35] R.L. Chaney, S.L. Brown, T. Stuczynski, W.L Daniels, C.L. Henry, Y.M Li, G. Siebielec, M. Malik, H. Compton, Risk assessment and remediation of soils contaminated by mining and smelting of lead, zinc and cadmium, Inter. J. Environ. Pollut. 16 (2000) 175-192.
  • [36] N.T. Basta, J.A. Ryan, R.L. Chaney, Trace element chemistry in residual treated soil: key concepts and metal bioavailability, J. Environ. Qual. 34 (2005) 49-63.
  • [37] G. Siebielec, R.L Chaney, U. Kukier, Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration, Plant Soil 29 (2007) 117-130.
  • [38] R.L. Chaney, S.L. Brown, J.S. Angle, T.I. Stuczynski, W.L. Daniels, C.L. Henry, G. Siebielec, Y.M. Li, M. Malik, J.A. Ryan, H. Compton. 2000. In situ remediation /reclamation/restoration of metals contaminated soils using tailor-made biosolids mixtures. Chapter 2; 24 pp. In Proc. Symp. Mining, Forest and Land Restoration: The Successful Use of Residuals/Biosolids/Organic Matter for Reclamation Activities (Denver, CO, July 17-20, 2000). Rocky Mountain Water Environment Association, Denver, CO.
  • [39] R.L Chaney, J. A. Ryan, U. Kukier, S.L. Brown, G. Siebielec, M. Malik I J.S. Angle, 2001. Heavy Metal Aspects of Compost Use. W P.J. Stofella i B.A. Kahn (Eds). Compost Utilization in Horticultural Cropping Systems. CRC Press, Boca Raton, FL.
  • [40] H. Harms, T.N.P. Bosma, Mass transfer limitation of microbial growth and pollutant degradation, J. Indust. Microbiol. Biotechnol. 18 (1997) 97-105.
  • [41] Q. Chaudhry, M. Blom-Zandstra, S. Gupta, E.J. Joner, Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment, Environ. Sci. Pollut. Res. 12 (2005) 34-48.
  • [42] T. Macek, M. Mackova, J. Kas, Exploitation of plants for the removal of organics in environmental remediation, Biotechnol. Adv. 18 (2000) 23-34.
  • [43] G. Gramms, K.D. Voigt, B. Kirche, Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material, Chemosphere 38 (1999) 148-1494.
  • [44] S. Susarla, V.F. Medina, S.C Mccutcheon, Phytoremediation: an ecological solution to organic chemical contamination, Ecol. Eng.18 (2002) 647-658.
  • [45] A.C. Singer, I.P. Thompson, M.J. Bailey, The tritrophic trinity: a source of pollutant-degradaing enzymes and its implications for phytoremediation, Current Opinion in Microbiol. 7 (2004) 239-244.
  • [46] I. Kuiper, E.L. Lagendijk, G.V Bloemberg, B.J.J. Lugtenberg, Rhizoremediation: abeneficial plant-microbe interaction, Molecular Plant-Microbe Interactions 17 (2004) 6-15.
  • [47] A. Yateem, T. Al-Sharrah, A. Bin-Haji, Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils, Soil Sed.Contamin. 16 (2007) 269-280.
  • [48] P.B. Rainey, Adaptation of Pseudomonas fluorescens to the plant rhizosphere, Environ. Microbiol. 1 (1999) 243-257.
  • [49] B.J.J. Lugtenberg, L. Dekkers, G.V. Bloemberg, Molecular determinants of rhizosphere colonization by Pseudomonas, Ann. Rev. Phytopath. 39 (2001) 461-490.
  • [50] L. Gianfreda, M.A. Rao, Potential of extra cellular enzymes in remediation of polluted soils: a review, Enzyme Microb. Technol. 35 (2004) 339-354.
  • [51] L. Liu, C.-Y. Jiang, X.-Y. Liu, J.-F Wu, J.-G. Han, S.-J. Liu, Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1, Environ.Microbiol. 9 (2007) 465-473.
  • [52] R.I. Dams, G.I. Paton, K. Killham, Rhizoremediation of pentachlorophenol by Sphinogobium chlorophenolicum ATCC 39723, Chemosphere 68 (2007) 864-870.
  • [53] A. Mizera, Osady ściekowe-odpadem (nie)bezpiecznym, Green World, 2002.
  • [54] J. Malej, Właściwości osadów ściekowych oraz wybrane sposoby ich unieszkodliwiania i utylizacji, Środkowo - pomorskie Towarzystwo Naukowe Ochrony Środowiska.
  • [55] K. Ignatowicz, K. Garlicka, T. Breńko, Wpływ kompostowania osadów ściekowych na zawartość wybranych metali i ich frakcji. Inżynieria Ekologiczna, 25 (2011) 231-241.
  • [56] J. Kazanowska, J. Szaciło, Analiza jakości osadów ściekowych oraz możliwość ich przyrodniczego wykorzystania, Acta Agroph., 19 (2012) 343-353.
  • [57] M. Nowak, M. Kacprzak, A. Grobelak, Osady ściekowe jako substytut glebowy w procesach remediacji i rekultywacji terenów skażonych metalami ciężkimi, Inżynieria i Ochrona Środowiska, 13 (2010) 121-131.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb5e5b5-e866-412b-8edd-ff3299d96d29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.