PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detonation Characteristics of Gaseous Isopropyl Nitrate at High Concentrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Isopropyl nitrate (IPN) is a component of propellant fuel. High concentrations of IPN can still produce detonation. To date, very limited literature is available regarding high concentrations of IPN detonations. The detonation pressure is related to the equivalence ratio and density of IPN/air mixtures. These two factors have opposing effects on the detonation of an IPN/air mixture. The detonation characteristics of gaseous IPN/air mixtures at high concentrations (300-4000 g/m3) have been studied numerically. The results showed that when the IPN concentration is 300-600 g/m3, density played a dominant role on detonation. The maximum detonation pressure, 2.81 MPa, and the maximum detonation velocity, 1890 m/s, occurred at a concentration of 600 g/m3 (equivalence ratio Φ = 2.15). When the IPN concentration was increased from 300 to 600 g/m3, the peak overpressure and velocity increased by 19.6% and 6.2%, respectively. When the IPN concentration is higher than 600 g/m3, the equivalence ratio is extremely large and the detonation properties were seriously degraded. An analysis of the detonation products illustrated the burn-off rate of high concentrations of IPN and the influence of the detonation product CH3CHO. At a concentration of 600 g/m3, the IPN/air mixture can achieve optimal detonation properties and fuel economy.
Rocznik
Strony
245--270
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081 Beijing, China
Bibliografia
  • [1] Ambekar, A.; Chowdhury, A.; Challa, S.; Radhakrishna, D. Droplet Combustion Studies of Hydrocarbon-monopropellant Blends. Fuel 2014, 115: 697-705.
  • [2] Zhou, J.; Ding, L.; An, J.; Zhu, Y.; Liang, Y. Study on the Thermal Behaviors of Nano-Al Based Fuel Air Explosive. J. Therm. Anal. Calorim. 2017, 130: 1111-1116.
  • [3] Zhang, F.; Murray, S.; Yoshinaka, A.; Higgins, A. Shock Initiation and Detonability of Isopropyl Nitrate. 12th Int. Detonation Symp., San Diego, CA, 2002, 781-790.
  • [4] Mbugua, A.; Satija, A.; Lucht, R.; Bane, S. Ignition and Combustion Characterization of Single Nitromethane and Isopropyl Nitrate Monopropellant Droplets under Hightemperature and quasi-Steady Conditions. Combust. Flame 2020, 212: 295-308.
  • [5] Roy, G.D.; Frolov, S.M.; Borisov, A.A.; Netzer, D.W. Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective. Prog. Energ. Combust. 2004, 30: 545-672.
  • [6] Gifford, M.J.; Proud, W.G.; Field, J.E. Development of a Method for Quantification of Hot-Spots. Thermochim. Acta 2002, 384: 285-290.
  • [7] Hedlund, F.H.; Nielsen, M.F.; Mikkelsen, S.H.; Kragh, E.K. Violent Explosion after Inadvertent Mixing of Nitric Acid and Isopropanol – Review 15 Years Later Finds Basic Accident Data Corrupted, no Evidence of Broad Learning. Safety Sci. 2014, 70: 255-261.
  • [8] Ambekar, A.; Sreedhara, S.; Chowdhury, A. Burn Rate Characterization of iso-Propyl Nitrate – A Neglected Monopropellant. Combust. Flame 2015, 162: 836-845.
  • [9] Liu, Q.; Bai, C.; Dai, W.; Jiang, L. Deflagration-to-Detonation Transition in Isopropyl Nitrate Mist/Air Mixtures. Combust. Explo. Shock+ 2011, 47(4): 488-456.
  • [10] Sheffield, S.; Davis, L.; Baer, M.; Engelke, R.; Alcon, R.R.; Renlund, A.M. Hugoniot and Shock Initiation Studies of Isopropyl Nitrate. AIP Conf. Proc. 2002, 620: 1051-1054.
  • [11] Nassim, B.; Zhang, Q. Thermal Stability of Explosive Mixture with Additives at Different Ambient Temperatures. Propellants Explos., Pyrotech. 2018, 43: 177-187.
  • [12] Liu, X.; Wang, Y. A Comparative Study of the Explosion Characteristics of IPN and IPN/JP-10 Mixtures in Air Aerosols. Propellants Explos., Pyrotech. 2017, 42: 1222-1232.
  • [13] Wang, H.; Sun, X.; Rao, G.; Jian, G.; Xie, L. The Critical Energy of Direct Initiation in Liquid Fuel-Air and Liquid Fuel-RDX Powder-Air Mixtures in a Vertical Detonation Tube. Propellants Explos., Pyrotech. 2014, 39: 597-603.
  • [14] Yao, G.; Zhang, B.; Xiu, G.; Bai, C.; Liu, P. The Critical Energy of Direct Initiation and Detonation Cell Size in Liquid Hydrocarbon Fuel/Air Mixtures. Fuel 2013, 113: 331-339.
  • [15] Zhang, Q.; Qian, X.; Fu, L.; Yuan, M.; Chen, Y. Shock Wave Evolution and Overpressure Hazards in Partly Premixed Gas Deflagration of DME/LPG Blended Multi-Clean Fuel. Fuel 2020, 268: 117368.
  • [16] Liu, L.; Zhang, Q. Comparison of Detonation Characteristics for Typical Binary Blended Fuel. Fuel 2020, 268: 117351.
  • [17] Song, Y.; Zhang, Q. Explosion Effect of Vapor-Liquid Two-Phase n-Heptane at Various Initial Temperatures. Process Saf. Environ. Prot. 2021, 145: 303-311.
  • [18] Batchelor, G.K. An Introduction to Fluid Dynamics. Cambridge Univ. Press, England, 1967, pp. 138-139; ISBN 978-0-521-66396-2.
  • [19] Magnussen, B.F.; Hjertager, B.H. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. Symp. (Int’l) on Combustion, 1977, 16: 719-729.
  • [20] Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence. Academic Press, London, 1972.
  • [21] Modest, M. Radiative Heat Transfer. 2nd ed., Academic Press, New York, 2003; ISBN 9780125031639.
  • [22] Wakeman, T.; Tabakoff, W. Measured Particle Rebound Characteristics Useful for Erosion Prediction. ASME paper 82-GT-170, 1982.
  • [23] Morin, J.; Bedjanian, Y. Thermal Decomposition of Isopropyl Nitrate: Kinetics and Products. J. Phys. Chem. A 2016, 120(41): 8037-8043.
  • [24] Chen, Y.; An, Z.; Chen, M.; Zhang, L. Quantum Chemistry Calculation of Hydrolysis Reaction of Isopropyl Nitrate. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2018, 41(5): 517-522.
  • [25] Swami, U.; Ambekar, A.; Gondge, D.; Sreedhara, S.; Chowdhury, A. Burn Rate Characterization of Desensitized Isopropyl Nitrate Blends. Combust. Flame 2018, 190: 454-466.
  • [26] Gong, X.D.; Xiao, H.M. Studies on the Molecular Structures, Vibrational Spectra and Thermodynamic Properties of Organic Nitrates using Density Functional Theory and ab initio Methods. J. Mol. Struc-Theochem. 2001, 572: 213-221.
  • [27] Ghahremanpour, M; van Maaren, P.J.; Ditz, J.C.; Lindh, R.; van der Spoel, D. Large-scale Calculations of Gas Phase Thermochemistry: Enthalpy of Formation, Standard Entropy, and Heat Capacity. J. Chem. Phys. 2016, 145, paper 114305: 1-12.
  • [28] Liu, X.; Ma, Y.; Li, S.; Yan, H.; Wang, D.; Luo, Y. Study of the Reaction Mechanism of Aluminum Based Composite Fuel and Chlorine Trifluoride Oxide. Energy 2019, 168: 393-399.
  • [29] Beeley, P.; Griffiths, J.F.; Gray, P. Rapid Compression Studies on Spontaneous Ignition of Isopropyl Nitrate Part Ⅱ: Rapid Sampling, Intermediate Stages and Reaction Mechanisms. Combust. Flame 1980, 39(3): 269-281.
  • [30] Zeng, X.; Chen, W.; Liu, J.; Kan, J. Study on NPN and IPN using Density Functional Theory. (in Chinese) Comput. Appl. Chem. 2008, 25(2): 201-204.
  • [31] Oxley, J.; Smith, J.; Rogers, E.; Ye, W. Heat-Release Behavior of Fuel Combustion Additives. Energ. Fuel 2001, 15: 1194-1199.
  • [32] Zeng, X.; Chen, W.; Liu, J. Molecular Structure, Electronic Structure and Heats of Formation of Explosive Sensitizers. (in Chinese) Acta Phys.-Chim. Sin. 2007, 23(2): 192-197.
  • [33] Krause, H.; Eisenreich, N.; Pfeil, A. Kinetics of Evaporation and Decomposition of Isopropyl Nitrate by Rapid Scan IR Spectroscopy. Thermochim. Acta 1989, 149: 349-356.
  • [34] Jones, D.E.G.; Feng, H.T.; Augsten, R.A.; Fouchard, R.C. Thermal Analysis Studies on Isopropyl Nitrate. J. Therm. Anal. Calorim. 1999, 55: 9-19.
  • [35] Xing, X.; Zhao, S.; Li, W.; Fang, W. The Reactivity between Aluminum Powder and Liquid Phase of Fuel-Air Explosives. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2016, 39(6): 55-57.
  • [36] Liu, L.; Zhang, Q. Comparison of Detonation Characteristics in Energy Output of Gaseous JP-10 and Propylene Oxide in Air. Fuel 2018, 232: 154-164.
  • [37] Jiang, L.; Bai, C.; Liu, Q. Experimental Study on DDT Process in 3-Phase Suspensions of Gas/Solid Particle/Liquid Mist Mixture. (in Chinese) Explos. Shock Waves 2010, 30(6): 588-592.
  • [38] Zhong, Y.; Wu, Y.; Jin, D.; Chen, X.; Yang, X.; Wang, S. Investigation of Rotating Detonation Fueled by the Pre-Combustion Cracked Kerosene. Aerosp. Sci. Technol. 2019, 95, paper 105480: 1-8.
  • [39] Karnesky, J.; Pitz, W.J.; Shepherd, J.E. Detonation in Gaseous Isopropyl Nitrate Mixtures. 2007 Fall Meeting of the Western States Section of the Combustion Institute Sandia National Laboratories, Livermore, CA, 2007, 07F-40.
  • [40] Borisov, A.A.; Troshin, K.Ya.; Mikhalkin, V.N. Ignition and Combustion of Isopropyl Nitrate. Russ. J. Phys. Chem. B 2016, 10(5): 780-784.
  • [41] Griffiths, J.F.; Gilligan, M.F.; Gray, P. Pyrolysis of Isopropyl Nitrate. I. Decomposition at Low Temperatures and Pressures. Combust. Flame 1975, 24: 11-19.
  • [42] Xie, L.; Li, B.; Zhang, Y. Experimental Study on Detonation Parameters and Cellular Structures of Fuel Cloud. Acta Mech. Sin. 2012, 28(2): 438-443.
  • [43] Adebiyi, A.; Alkandari, R.; Valiev, D.; Akkerman, V. Effect of Surface Friction on Ultrafast Flame Acceleration in Obstructed Cylindrical Pipes. AIP Adv. 2019, 9(3) paper 035249: 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb5affe-9121-4ab9-8a15-936913b538c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.