Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research of the optimal surface structure has attracted considerable interest because of its potential application in light trapping in thin-film solar cells (TFSCs). In this paper, a super-fine structure named complex trapezoid grating is proposed to improve the optical absorption comparing to the conventional simple trapezoid grating in a-Si:H TFSCs. The numerical calculation by utilizing rigorous coupled-wave analysis (RCWA) is conducted to obtain the optical absorption of the structured surface. The results demonstrate that, compared to a planar slab, the optimized-simple trapezoid grating shows 97% enhancement of power conversion efficiency η while the complex trapezoid grating shows 131% enhancement. Obviously, the complex trapezoid grating exhibits a better performance than the simple grating, which is due to the perfect antireflective effect and microcavity resonance effect. The angular response of the optical absorption in a-Si:H TFSCs was also investigated. The results further indicate that it is a better way to select the complex trapezoid grating in improving the optical absorption of silicon-based TFSCs.
Czasopismo
Rocznik
Tom
Strony
391--400
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong 723001, China
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
autor
- Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong 723001, China
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
autor
- Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong 723001, China
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Bibliografia
- [1] LUQUE A., HEGEDUS S., Handbook of Photovoltalic Science and Engineering, Wiley Press, England, 2003.
- [2] FAHR S., ULBRICH C., KIRCHARTZ T., RAU U., ROCKSTUHL C., LEDERER F., Rugate filter for light-trapping in solar cells, Optics Express 16(13), 2008, pp. 9332–9343, DOI:10.1364/OE.16.009332.
- [3] ATWATER H.A., POLMAN A., Plasmonics for improved photovoltaic devices, Nature Materials 9(3), 2010, pp. 205–213, DOI:10.1038/nmat2629.
- [4] AKIMOV YU.A., KOH W.S., Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells, Plasmonics 6(1), 2011, pp. 155–161, DOI:10.1007/s11468-010-9181-4.
- [5] AKIMOV YU.A., KOH W.S., OSTRIKOV K., Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticles plamon modes, Optics Express 17(12), 2009, pp. 10195–10205, DOI:10.1364/OE.17.010195.
- [6] TEMPLE T.L., MAHANAMA G.D.K., REEHAL H.S., BAGNALL D.M., Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells, Solar Energy Materials and Solar Cells 93(11), 2009, pp. 1978–1985, DOI:10.1016/j.solmat.2009.07.014.
- [7] QIAO L., WANG D., ZUO L., YE Y., QIAN J., CHEN H., HE S., Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres, Applied Energy 88(3), 2011, pp. 848–852, DOI:10.1016/j.apenergy.2010.09.021.
- [8] FERRY V.E., SWEATLOCK L.A., PACIFICI D., ATWATER H.A., Plasmonic nanostructure design for efficient light coupling into solar cells, Nano Letters 8(12), 2008, pp. 4391–4397, DOI:10.1021/nl8022548.
- [9] ABASS A., SHEN H., BIENSTMAN P., MAES B., Angle insensitive enhancement of organic solar cells using metallic grating, Journal of Applied Physics 109(2), 2011, article 023111, DOI:10.1063/1.3533980.
- [10] PALA R.A., WHITE J., BARNARD E., LIU J., BRONGERSMA M.L., Design of plasmonic thin-film solar cells with broadband absorption enhancements, Advanced Materials 21(34), 2009, pp. 3504–3509, DOI:10.1002/adma.200900331.
- [11] SHEN H., MAES B., Combined plasmonic gratings in organic solar cells, Optics Express 19(S6), 2011, pp. A1202–A1210, DOI:10.1364/OE.19.0A1202.
- [12] FEI GUO C., SUN T., CAO F., LIU Q., REN Z., Metallic nanostructures for light trapping in energy-harvesting devices, Light: Science and Applications 3(4), 2014, article e161, DOI:10.1038/lsa.2014.42.
- [13] WU W., MAGNUSSON R., Total absorption of TM polarized light in a 100 nm spectral band in a nano-patterned thin a-Si film, Optics Letters 37(11), 2012, pp. 2103–2105, DOI:10.1364/OL.37.002103.
- [14] MARTINS E.R., LI J., LIU Y.K., ZHOU J., KRAUSS T.F., Engineering gratings for light trapping in photovoltaics: the supercell concept, Physical Review B 86(4), 2012, article 041404(R), DOI:10.1103/PhysRevB.86.041404.
- [15] DENG J., WANG M., YANG Z., LIU J., SUN Z., SONG X., Application of patterned growth of aligned zinc oxide nanoarrays by mirocontact printing in quantum dots-sensitized solar cells, Journal of Power Sources 280, 2015, pp. 555–564, DOI:10.1016/j.jpowsour.2015.01.137.
- [16] DENG J., WANG M., YANG Z., YANG Y., ZHANG P., Preparation of TiO2 nanoparticles two-dimensional photonic-crystals: a novel scattering layer of quantum dot-sensitized solar cells, Materials Letters 183, 2016, pp. 307–310, DOI:10.1016/j.matlet.2016.07.139.
- [17] ZHU J., YU Z., BURKHARD G.F., HSU C.M., CONNOR S.T., XU Y., WANG Q., MCGEHEE M., FAN S., CUI Y., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Letters 9(1), 2009, pp. 279–282, DOI:10.1021/nl802886y.
- [18] WANG W., WU S., REINHARDT K., LU Y., CHEN S., Broadband light absorption enhanccment in thin-film silicon solar cells, Nano Letters 10(6), 2010, pp. 2012–2018, DOI:10.1021/nl904057p.
- [19] MOHARAM M.G., GAYLORD T.K., Diffraction analysis of dielectric surface-relief gratings, Journal of the Optical Society of America 72(10), 1982, pp. 1385–1392, DOI:10.1364/JOSA.72.001385.
- [20] MOHARAM M.G., GAYLORD T.K., Rigorous coupled-wave analysis of metallic surface-relief gratings, Journal of the Optical Society of America A 3(11), 1986, pp. 1780–1787, DOI:10.1364/JOSAA.3.001780.
- [21] MOHARAM M.G., GRANN E.B., POMMET D.A., GAYLORD T.K., Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings, Journal of the Optical Society of America A 12(5), 1995, pp. 1068–1076, DOI:10.1364/JOSAA.12.001068.
- [22] PALIK E.D., Handbook of Optical Constants of Solids, Academic Press, San Diego, 1985.
- [23] FENG N., MICHEL J., ZENG L., LIU J., HONG C., KIMERLING L.C., DUAN X., Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells, IEEE Transactions on Electron Devices 54(8), 2007, pp. 1926–1933, DOI:10.1109/TED.2007.900976.
- [24] WANG K.X., YU Z., LIU V., CUI Y., FAN S., Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings, Nano Letters 12(3), 2012, pp. 1616–1619, DOI:10.1021/nl204550q.
- [25] MENG X., DEPAUW V., GOMARD G., EL DAIF O., TROMPOUKIS C., DROUARD E., JAMOIS C., FAVE A., DROSS F., GORDON I., SEASSAL C., Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells, Optics Express 20(S4), 2012, pp. A465–A475, DOI:10.1364/OE.20.00A465.
- [26] CHENG Q., LI P., LU J., YU X., ZHOU H., Silicon complex grating with different groove depths as an absorber for solar cells, Journal of Quantitative Spectroscopy and Radiative Transfer 132(2), 2014, pp. 70–79, DOI:10.1016/j.jqsrt.2013.01.027.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fb17e96-0e1d-4a02-8c55-5cadcbb97820