PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selection of optimal spawner-pairs based on the polymorphism of microsatellite loci in a partially-tetraploid fish species (Coregonus lavaretus)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many species that are in danger of extinction require human support in the form of captive-breeding programs to help maintain their populations in the wild.When breeding in captivity, it is important to select breeding pairs that will create the most genetically diverse progeny. Based on the polymorphism of their microsatellite loci, breeding pairs of diploid land animals have been successfully selected. In this theoretical paper, we asked how to adapt this technique to the selection of spawner pairs for restocking populations of partially tetraploid fish species. To test our calculation techniques, we used actual data on the polymorphism of the loci of captured whitefish (Coregonus lavaretus). The data enabled calculations showing which spawner pairs would create the most genetically diverse cohort of offspring if they were bred. Themethod presented in the paper can be used for breeding fish in aquaculture conditions to help conserve species.
Rocznik
Strony
20--25
Opis fizyczny
Bibliogr. 24 poz., tab.
Twórcy
  • Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-718 Olsztyn, Poland; Phone: +48 89 523 41 51
  • Department of Ichthyology, University of Warmia and Mazury in Olsztyn, Poland
  • Department of Ichthyology, University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • Bartel, R. 2000. Effectiveness of stocking tagged sea trout smolts into Reda River and Puck Bay. Archives of Polish Fisheries 8: 149-159.
  • Bruford, M.W., R.K. Wayne. 1993. Microsatellites and their application to population genetic studies. Current Opinions in Genetics and Development 3: 939-943.
  • Bryant, E.H., S.A. McCommas, L.M. Combs. 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191-1211.
  • Dieringer, D., C. Schlötterer. 2003. Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3: 167-169.
  • Estoup, A., P. Presa, F. Krieg, D. Vaiman, R. Guyomard. 1993. (CT) and (GT) microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71: 488-496.
  • Fopp-Bayat, D., M. Luczynski. 2006. Application of microsatellite DNA markers for genetic identification of sturgeon species and their hybrids. Environmental Biotechnology 2: 11-19.
  • Fopp-Bayat, D., D. Kaczmarczyk, M. Szczepkowski. 2015. Genetic characteristics of Polish whitefish (Coregonus lavaretus maraena) broodstocks – recommendations for the conservation management. Czech Journal of Animal Science 4: 171-177.
  • Fraser, D. 2008. How well can captive breeding programs conserve biodivesity? A review of salmonids. Evolutionary Applications 2: 1-52.
  • Hallerman, E.M. 2003. Inbreeding. In: Population Genetics. Principles and Applications for Fisheries Scientists (ed. E.M. Hallerman), pp. 215-239. American Fisheries Society, Bethesda, Maryland, USA.
  • Hansen, M.M., D.E. Ruzzante, E.E. Nielsen, K.L.D. Mensberg. 2000. Microsatellite and mitochondrial DNA polymorphism reveals life-history dependent interbreeding between hatchery and brown trout. Molecular Ecology 9: 583-594.
  • Hedrick, P., P.S. Miller, E. Geffen, R. Wayne. 1997. Genetic evaluation of the three captiveMexican wolf lineages. Zoo Biology 16: 47-69.
  • Henderson, A.P., A.P. Spidle, T.L. King. 2004. Genetic diversity, kinship analysis, and broodstock management of captive Atlantic sturgeon for population restoration. American Fisheries Society Symposium 44: 621-633.
  • Kaczmarczyk, D. 2015. Genassemblage software, a tool for management of genetic diversity in human dependent population. Conservation Genetic Resources 7: 49-51.
  • Kaczmarczyk, D., D. Fopp-Bayat. 2013. Assemblage of spawning pairs based on their individual genetic profiles – as tool for maintaining genetic variation within sturgeon populations. Aquaculture Research 44: 677–682.
  • Le Comber, S.C., C. Smith. 2004. Polyploidy in fishes: patterns and processes. Biological Journal of the Linnean Society 82: 431-442.
  • Luczynski, M., S. Falkowski, J.A. Vuorinen, M. Jankun. 1992. Genetic identification of European whitefish (Coregonus lavaretus), peled (Coregonus peled), and their hybrids in spawning stocks of ten Polish lakes. In: Biology and Management of Coregonid Fishes (ed. T.N. Todd and M. Luczynski), Polish Archives of Hydrobiology 39: 571-577.
  • McConnel, S.K., L. Hamilton, J.Wright, P. Bentzen. 1994. Polymorphic microsatellite loci from Atlantic salmon (Salmo salar): genetic differentiation of North American and European populations. Canadian Journal of Fisheries and Aquatic Sciences 52: 1863-1872.
  • Nynca, J., G.J. Dietrich, D. Fopp-Bayat, M.A. Dietrich, M. Słowińska, E. Liszewska, H. Karol, A. Martyniak, A. Ciereszko. 2012. Qualityparameters of fresh and cryopreserved whitefish (Coregonus lavaretus L.) semen. Journal of Applied Ichthyology 28: 934-940.
  • Parsons,D.R. 1998. „Green fire” returns to the Southwest: reintroduction of theMexican wolf.Wildlife Society Bulletin 26: 799-807.
  • Perry, G.L., T.L. King, J.S.T. Cyr, M. Valcourt, L. Bernatchez. 2005. Isolation and cross-familial amplification of 41 microsatellites for brook charr (Salvelinus fontinalis). Molecular Ecology Notes 5: 346-351.
  • Rogers, S., M.-H. Marchand, L. Bernatchez. 2004. Isolation, characterization and cross-salmonid amplification of 31 microsatellite loci in the lake whitefish (Coregonus clupeaformis, Mitchill). Molecular Ecology Notes 4: 89–92.
  • Ruzzante, D.E. 1998. A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance. Canadian Journal of Fisheries and Aquatic Sciences 55: 1-14.
  • Stow, A.J., D.A. Briscoe. 2005. Impact of habitat fragmentation on allelic diversity at microsatellite loci in Cunningham’s skink (Egernia cunninghami); a preliminary study. Conservation Genetics 6: 455–459.
  • Walsh, P.S., D.A.Metzger, R. Higuchi. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506-513.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fafc0b5-d3e0-476e-ad11-333558537bca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.