PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid upconverting/paramagnetic Fe3O4/Gd2O3:Er3+, Yb3+, Mg2+, Nd3+ nanoparticles : synthesis, characterization and biological applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goals of this work are to design and develop a technology for fabrication and study of multifunctional properties of core/shell nanoparticles (NPs) as magnetic/luminescent markers. The new hybrid core/shell Fe₃O₄/Gd₂O₃:1% Er³+, 18% Yb³+, 2.5% Mg²+, x% Nd³+ NPs doped with different concentrations of neodymium ions, where x = 0%, 0.5%, 0.75%, 1%, 2%, 4%, were synthesized by the co-precipitation method. The NPs were characterised using XRD, TEM, SEM, EDX, confocal microscopy and photoluminescence. Fe₃O₄ (core) consists of several 13 nm NPs. The core/shell NPs have sizes from 220 nm to 641 nm. In this latter case, the shell thicknesses were 72, 80, and 121 nm. The upconversion efficiency properties and magnetic properties of the hybrid NPs were investigated. In the core/shell NPs, the addition of Nd³+ quenches the luminescence. The magnetic response of core/shell samples is rather paramagnetic and does not differ significantly from that registered for the shell material alone. For Gd₂O₃:1% Er³+, 18% Yb³+ and Fe₃O₄/Gd₂O₃:1% Er³+, 18% Yb³+, 2.5% Mg²+, 0.5% Nd³+, at 300 K, the values of the magnetization registered at ~ 40 kOe are similar and equal to ~ 5.3 emu·g⁻¹. The survivability of the HeLa tumor cells with the presence of the core/shell NPs was investigated for 24 h. The NPs are non-toxic up to a concentration of 1000 μg·ml⁻¹ and penetrate cells in the process of endocytosis which has been confirmed by confocal microscope studies.
Rocznik
Strony
art. no. e150182
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, Warsaw 02-089, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • International Research Centre MagTop, al. Lotników 32/46, Warsaw 02-668, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • International Research Centre MagTop, al. Lotników 32/46, Warsaw 02-668, Poland
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, Warsaw 02-668, Poland
  • International Research Centre MagTop, al. Lotników 32/46, Warsaw 02-668, Poland
Bibliografia
  • [1] Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620-2640 (2010). https://doi.org/10.1021/cr900263j.
  • [2] Qiu, H., Tan, M., Ohulchanskyy, T. Y., Lovell, J. F. & Chen, G. Recent progress in upconversion photodynamic therapy. Nanomaterials 8, 344 (2018). https://doi.org/10.3390/nano8050344.
  • [3] Shabanzadeh-Kouyakhi, A., Masoudi, A. & Ardestani, M. Synthesis method of novel Gd2O3@Fe3O4 nanocomposite modified by dextrose capping agent. Ceram. Int. 9, 13442-13448 (2020). https://doi.org/10.1016/j.ceramint.2020.02.127.
  • [4] Qin, M. et al. Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode MR imaging. Beilstein J. Nanotechnol. 11, 1000-1009 (2020). https://doi.org/10.3762/bjnano.11.84.
  • [5] Tan, J., Shah, S., Thomas, A., Ou-Yang, H. D. & Liu, Y. The influence of size, shape and vessel geometry on nanoparticle distribution, Microfluid. Nanofluidics 14, 77-87 (2013). https://doi.org/10.1007/s10404-012-1024-5.
  • [6] Peng, H., Cui, B. & Wang, Y. Bifunctional Fe3O4@Gd2O3:Eu3+ nanocomposites obtained by the homogeneous precipitation method. Mat. Res. Bull. 48, 1767-1771 (2013). https://doi.org/10.1016/j.materresbull.2013.01.001.
  • [7] Shabanzadeh-Kouyakhi, A. Embedding Gd2O3 nanoparticles hydrothermally prepared in a Fe3O4 shell and surface modification with a dextrose bio capping agent. Ceram. Int. 48, 31326-31333 (2022). https://doi.org/10.1016/j.ceramint.2022.06.285.
  • [8] Chame, K. F. et al. Green and red upconversion luminescence in multifunctional Ag@Fe3O4@Gd2O3:Er3+ composites. J. Alloys Compd. 744, 683-690 (2018). https://doi.org/10.1016/j.jallcom.2018.02.038.
  • [9] Shen, J., Sun, L.-D., Zhang, Y.-W. & Yan, Ch.-H. Superparamag-netic and upconversion emitting Fe3O4/NaYF4:Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem. Commun. 46, 5731-5733 (2010). https://doi.org/10.1039/C0CC00814A.
  • [10] Tejeda, E. M., Arámburo, M., Vargas, E., Contreras, O. E. & Hirata, G. A. Novel bifunctional Nd:YAG/Fe3O4 nanocomposite as nanothermometer/nanoheater for potential biomedical applications. J. Phys. D: Appl. Phys. 51, 40LT01 (2018). https://iopscience.iop.org/article/10.1088/1361-6463/aad7e5.
  • [11] Jing, P. et al. Controlled fabrication of bi-functional Fe3O4@ SiO2@Gd2O3:Yb, Er nanoparticles and their magnetic, up-conversion luminescent properties. RSC Adv. 4, 44575 (2014). https://doi.org/10.1039/C4RA06146B.
  • [12] Vu, H. H. T., Atabaev, T. Sh., Nguyen, N. D., Hwang, Y.-H. & Kim, H.-K. Luminescent core–shell Fe3O4@Gd2O3:Er3+, Li+ composite particles with enhanced optical properties. J. Sol-Gel Sci. Technol. 71, 391-395 (2014). https://doi.org/10.1007/s10971-014-3382-9.
  • [13] Wu, T. et al. Effect of solution pH value changes on fluorescence intensity of magnetic-luminescent Fe3O4@Gd2O3:Eu3+ nanoparticles. J. Rare Earths 34, 71-76 (2016). https://doi.org/10.1016/S1002-0721(14)60581-0.
  • [14] Yadaw, P. K., Padhi, R. K., Dubey, V., Rao, M. C. & Swamy, N. K. Influence of excitation wavelength on the down-conversion photoluminescence characteristics of Gd2O3:Er3+-Yb3+ phosphor. Inorg. Chem. Commun. 143, 109736 (2022). https://doi.org/10.1016/j.inoche.2022.109736.
  • [15] Priya, R., Pandey, O. P. & Dhoble, S. J. Review on the synthesis, structural and photo-physical properties of Gd2O3 phosphors for various luminescent applications. Opt. Laser Technol. 135, 106663 (2021). https://doi.org/10.1016/j.optlastec.2020.106663.
  • [16] Kamińska, I. et al. Synthesis and characterization of Gd2O3:Er3+, Yb3+ doped with Mg2+, Li+ ions - effect on the photoluminescence and biological applications. Nanotechnology 32, 245705 (2021). https://iopscience.iop.org/article/10.1088/1361-6528/abed02.
  • [17] Liu, B., Li, C., Yang, P., Hou, Z. & Lin, J. 808-nm-light-excited lanthanide-doped nanoparticles: rational design, luminescence control and theranostic applications. Adv. Mater. 29, 1605434 (2017). https://doi.org/10.1002/adma.201605434.
  • [18] Gao, Y., Murai, S., Shinozaki, K. & Tanaka, K. Up-conversion luminescence enhanced by the plasmonic lattice resonating at the transparent window of water. ACS Appl. Energy Mater. 4, 2999-3007 (2021). https://doi.org/10.1021/acsaem.0c01826.
  • [19] Kushida, T., Marcos, H. M. & Geusic, J. E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet. Phys. Rev. 167, 289-291 (1968). https://doi.org/10.1103/PhysRev.167.289.
  • [20] Liégard, F., Doualan, J. L., Moncorgé, R. & Bettinelli, M. Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm. Appl. Phys. B 80, 985-991 (2005). https://doi.org/10.1007/s00340-005-1829-y.
  • [21] Shen, S. et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67-74 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.064.
  • [22] Meza, O., Diaz-Torres, L. A., Salas, P., de la Rosa, E. & Solis, D. Color tunability of the upconversion emission in Er-Yb doped the wide band gap nanophosphors ZrO2 and Y2O3. Mater. Sci. Eng. B 174, 177-181 (2010). https://doi.org/10.1016/j.mseb.2010.03.015.
  • [23] Tian, L. et al. The upconversion luminescence of Er3+/Yb3+/Nd3+ triply-doped β-NaYF4 nanocrystals under 808-nm excitation. Materials 7, 7289-7303 (2014). https://doi.org/10.3390/ma7117289.
  • [24] Zhao, X. et al. Controlling the multicolor upconversion luminescence in CaF2 nanocrystals doped with Yb3+, Er3+ and Nd3+ ions under the excitation of a 808 nm laser. Opt. Mater. Express 9, 4578-4587 (2019). https://doi.org/10.1364/OME.9.004578.
  • [25] Wen, S. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415 (2018). https://doi.org/10.1038/s41467-018-04813-5.
  • [26] Kamińska, I. et al. Upconverting/magnetic: Gd2O3: (Er3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping. RSC Adv. 5, 78361 (2015). https://doi.org/10.1039/C5RA11888C.
  • [27] Wanga, H. et al. Luminescence property tuning of Yb3+-Er3+ doped oxysulfide using multiple-band co-excitation. RSC Adv. 8, 16557-1656 (2018). https://doi.org/10.1039/C8RA02503G.
  • [28] Pacakova, B., Kubickova, S., Reznickova, A., Niznansky, D. & Vejpravova, J. Spinel Ferrite Nanoparticles: Correlation of Structure and Magnetism. in Magnetic Spinels - Synthesis, Properties and Applications (ed. Seehra, M. S.) ch. 1 (IntechOpen, 2017). https://doi.org/10.5772/66074
  • [29] Chikazumi, S. & Graham, C. D. Physics of Ferromagnetism. (Oxford Science Publications, 1997).
  • [30] Knobel, M. et al. Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836-2857 (2008). https://doi.org/10.1166/jnn.2008.15348.
  • [31] Fukuma, K. & Torii, M. Absolute calibration of low- and high-field magnetic susceptibilities using rare earth oxides. Geochem. Geophys. Geosyst. 12, 1-11 (2011). https://doi.org/10.1029/2011GC003694.
  • [32] Cao, S. et al. Electronic structure and direct observation of ferrimagnetism in multiferroic hexagonal YbFeO3. Phys. Rev. B 95, 224428 (2017). https://doi.org/10.1103/PhysRevB.95.224428.
  • [33] Foex, G. Selected constants of diamagnetism and paramagnetism. in Tables of Constants and Numerical Data 5-226 (Allard, S. & Masson, Paris, 1957).
  • [34] Hacker, H., Lin, M. S. & Westrum Jr., E. F. Magnetic Suscepti-bility of Several Rare Earth Oxides. in 3rd Conference on Rare Earth Research 93-105 (Gordon and Breach, New York, 1963).
  • [35] Correa, E. L. et al. Properties of Gd2O3 nanoparticles studied by hyperfine interactions and magnetization measurements. AIP Adv. 6, 056112 (2016). https://doi.org/10.1063/1.4943601.
  • [36] Žid, L., Zeleňák, V., Berkutova, A., Szűcsová, J. & Zeleňáková, A. Nanocargo-delivery platform for targeted drug delivery in biomedical applications: Magnetic Gd2O3 nanoparticles in porous SiO2. Acta Phys. Pol. A 137, 773-775 (2020). https://doi.org/10.12693/APhysPolA.137.773.
  • [37] Hazarika, S. et al. Magnetic and magnetocaloric properties of rare-earth substituted Gd2O3 nanorods. AIP Adv. 12, 035208 (2022). https://doi.org/10.1063/9.0000278.
  • [38] Chavez, D. H., Juarez-Moreno, K. & Hirata, G. A. Aminosilane functionalization and cytotoxicity effects of upconversion nanoparticles Y2O3 and Gd2O3 Co-doped with Yb3+and Er3+, Nanobiomedicine 2016, 1-7 (2016). https://doi.org/10.5772/62252.
  • [39] Gal, N. et al. Interaction of size-tailored pegylated iron oxide nanoparticles with lipid membranes and cells. ACS Biomater. Sci. Eng. 3, 249-259 (2017). https://doi.org/10.1021/acsbiomaterials.6b00311.
  • [40] Kamińska, I. et al. Synthesis of ZnAl2O4: (Er3+, Yb3+) spinel-type nanocrystalline upconverting luminescent marker in HeLa carcinoma cells, using a combustion aerosol method route. RSC Adv. 4, 56596 (2014). https://doi.org/10.1039/C4RA10976G.
  • [41] Kamińska, I. et al. Synthesis and characterization of Gd2O3:Er3+, Yb3+ doped with Mg2+, Li+ ions - effect on the photoluminescence and biological applications. Nanotechnology 32, 245705 (2021). https://doi.org/10.1088/1361-6528/abed02.
  • [42] Zajdel, K. et al. Nano-bio interactions of upconversion nanoparticles at subcellular level: biodistribution and cytotoxicity. Nanomedicine 18, 233-258 (2023). https://doi.org/10.2217/nnm-2022-0320.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4faec1d5-562e-42fc-ba09-de36ddef43ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.