PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of radiological hazards and trace element contamination around thermal power plant at Udupi on the Southwest coast of India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coastal Karnataka on the southwest coast of India is heading to become a region of major industrial activity center with the operation of oil refineries, petrochemical complexes and nuclear and thermal power stations. In view of this, studies have been initiated on radioactivity and trace elements to assess the impact of these industrial activities on the human population and environment of the region. As a result, the radiological hazards originating from radioactivity in soil and fly ash were evaluated in the vicinity of a thermal power plant at Udupi in coastal Karnataka. The gamma ray spectrometer techniques were employed to measure radioactivity in soil and fly ash sample. The mean activity concentration of 40K, 232Th and 226Ra in soils was found to be 190.64 ± 3.60 Bq kg-1,43.74 ± 2.17 Bq kg-1 and 59.36 ± 1.74 Bq kg-1 similarly for fly ash it was found to be 229.37 ± 4.22 Bq kg-1, 28.29 ± 1.73 Bq kg-1 and 39.06 ± 1.49 Bq kg-1, respectively. The possible impact of natural radiation on a human has been assessed by calculating the hazards parameters. Spatial distribution of natural radionuclides in the study area was also investigated for radioactivity disequilibrium. Major mineralogical analysis was carried out using XRD and FTIR techniques. The trace element C, O, Al, Si, Fe, Ti, Cr, K, Mg, Mn and Ni in soil were determined by FESEM/EDS. The soil in the region was found to be rich in aluminum and silica, with iron being the next most abundant element.
Czasopismo
Rocznik
Strony
1289--1303
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Department of Physics, Mangalore University, Mangalagangothri 574 199, India
  • Department of Physics, Bearys Institute of Technology, Mangalore 574 153, India
  • Department of Physics, BMS College of Engineering, Bengaluru 560 019, India
  • Department of Physics, Mangalore University, Mangalagangothri 574 199, India
Bibliografia
  • 1. Abdullah MAB, Jamaludin L, Kamarudin H, Binhussain M, Ghazali CR, Izzat AM (2013) Study on fly ash based geopolymer for coating applications. Adv Mat Res 686:227–233. https://doi.org/10.4028/www.scientific.net/AMR.686.227
  • 2. Adappa S, Tiwari RR, Guddattu V (2017) Health effects and environmental issues in residents around coal-fired thermal power plant, Padubidri: a cross-sectional study. J Environ Occup Health 6(1):8–11. https://doi.org/10.5455/jeos.20170215104352
  • 3. Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226 Ra, 232 Th and 40 K activities in beach sand minerals and beach soils of Cox’s Bazar Bangladesh. J of Environ Radioact 46(2):243–250. https://doi.org/10.1016/S0265-931X(98)00143-X
  • 4. Alberto M, Laura G, Valerio P, Giuseppe D (1996) Distribution of 226 Ra 232 Th and 40 K in soil of Rio Grand do Norte (Brazil). J Environ Radioact 30(1):55–67. https://doi.org/101016/0265-931X(95)00035-9
  • 5. Alnour IA, Wagiran H, Ibrahim N, Laili Z, Omar M, Hamzah S, Bello Y, Idi, (2012) Natural radioactivity measurements in the granite rock of quarry sites, Johor Malaysia. Radiat Physd Chem 81(12):1842–1847. https://doi.org/10.1016/j.radphyschem.2012.08.005
  • 6. Anselmo Salles Paschoa Friedrich Steinhausler (2009) TENR-technologically enhanced natural radiation. Elsevier, Amsterdam
  • 7. Baeza A, Delrio M, Miro C, Pumiagua J (1994) Natural radionuclide distribution in soils of Cacers (Spain): dosimetry implications. J Environ Radioact 23(1):19–37. https://doi.org/10.1016/0265-931X(94)90503-7
  • 8. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A (2020) Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res 193(1):118–129. https://doi.org/10.1007/s12011-019-01706-6
  • 9. Basak BB, Ray P, Biswas DR (2021) Emerging threat of potassium mining in Indian soils: Harnessing the potential of low-grade mica minerals through microbial intervention. In: Biofertilizers. Woodhead Publishing, p 289–299. https://doi.org/10.1016/B978-0-12-821667-5.00002-6
  • 10. Belluso E, Bellis D, Fornero E, Capella S, Ferraris G, Coverlizza S (2006) Assessment of inorganic fibre burden in biological samples by scanning electron microscopy–energy dispersive spectroscopy. Microchim Acta 155:95–100. https://doi.org/10.1007/s00604-006-0524-y
  • 11. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials Industrial Wastes and by-Products. Health Phys 48(1):87–95. https://doi.org/10.1097/00004032-198501000-00007
  • 12. CGWB (2008) Central ground water board, Minister of water resources. River development and ganga rejuvenation, Government of India. http://cgwb.gov.in/District_Profile/karnataka/UDUPI_BROCHURE.pdf
  • 13. Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B (2016) Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10(4):436–444. https://doi.org/10.3109/17435390.2015.1073812
  • 14. EC-European Commission (1999) Radiological protection principles concerning the natural radioactivity of building materials. Radiat Prot, 112.
  • 15. El-Gamal GH, Farid ME, Mageed AA, Hasabelnaby M, Hassanien HM (2013) Assessment of natural radioactivity levels in soil samples from some areas in Assiut Egypt. Environ Sci Pollut Res 20(12):8700–8708. https://doi.org/10.1007/s11356-013-1844-1
  • 16. EML (1983) In: HL Volchok, and G de Planque (Eds), Environmental measurement laboratory. Procedure manual (26 th ed).
  • 17. Fadol N, Idriss H (2022) Radiological profile of 226Ra, 232Th, and 40K in agricultural area around Blue Nile State. Sudan Acta Geophysica 70(4):1737–1743. https://doi.org/10.1007/s11600-022-00835-2
  • 18. Günay OSMAN, Saç MM, Içhedef MUTLU, Taşköprü CANER (2019) Natural radioactivity analysis of soil samples from Ganos fault (GF). Int J Environ Sci Techonol 16(9):5055–5058. https://doi.org/10.1007/s13762-018-1793-9
  • 19. Hoshino M, Sanematsu K, Watanabe Y (2016) REE mineralogy and resources. Handb Phys Chem Rare Earths 49:129–291
  • 20. Huang PM, Wang MK (2005) Encyclopedia of soils in the environment. Miner Prim. https://doi.org/10.1016/B0-12-348530-4/00464-1
  • 21. IAEA International atomic energy agency (1996) Regulations for the Safe Transport of Radioactive Material. IAEA Division of Public Information, Vienna, pp 96–725
  • 22. ICRP International Commission on Radiological Protection (1990) Annals of ICRP 1990 recommendations of the international commission on radiological protection. ICRP Publication No 60, Pergamon
  • 23. Inigo Valan I, Mathiyarasu R, Lakshmi Narasimhan C, Sridhar SGD, Narayanan V, Stephen A (2020) Mineralogical influence over the presence of primordial radionuclide along the industrial corridor of northern coastal region of Chennai. J Radioanal Nucl Chem 323(1):117–133
  • 24. Kamalakar VD, Vinutha PR, Kaliprasad CS, Narayana Y (2022) Dependence of natural radioactivity on physico-chemical parameters of soils in Belagavi region of Karnataka India. Environmental Forensics. https://doi.org/10.1080/15275922.2022.2125113
  • 25. Kardos R, Sas Z, Shahrokhi A, Somlai J, Kovács T (2015) Radionuclide content of NORM by-products originating from the coalfired power plant in Oroszlány (Hungary). Radiat Prot Dosimetry 167(1–3):266–269. https://doi.org/10.1093/rpd/ncv259
  • 26. Kavasara M, Vinutha PR, Kaliprasad CS, Narayana Y (2021) Studies on the dependence of natural radioactivity on clay minerals of soils in Davanagere district of Karnataka, India. J Radioanal Nucl Chem 330(3):1461–1471. https://doi.org/10.1080/03067319.2021.2020764
  • 27. Khan IU, Sun W, Lewis E (2020) Estimation of various radiological parameters associated with radioactive contents emanating with fly ash from Sahiwal coal–fuelled power plant Pakistan. Environ Monit Assess 192(11):1–11. https://doi.org/10.1007/s10661-020-08669-5
  • 28. Krieger R (1981) Radioactivity of construction materials, betonwerk fertigteil technik/concrete precasting plant and technplogy. Sci Res 47:468–473
  • 29. Kumar A, Vij R, Sharma S, Sarin A, Narang S (2018) Assessment of radionuclide concentration and exhalation studies in soil of lesser Himalayas of Jammu and Kashmir. India Acta Geophysica 66(5):1195–1202. https://doi.org/10.1007/s11600-018-0119-0
  • 30. Lafuente B, Downs RT, Yang H, Stone N (2015) The power of data-bases: The RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. De Gruyter, Berlin, p 1
  • 31. Lokesh N, Vinutha PR, Malleshi K, Narayana Y (2022) Natural radionuclides in rocks and their association with the mineralogy of rocks in Dakshina Kannada region of southern India. Acta Geophys. https://doi.org/10.1007/s11600-022-00866-9
  • 32. Lu X, Zhang X (2007) Radionuclide content and associated radiation hazards of building materials and by-products in Baoji. West China Radiat Prot Dosim 128(4):471–476. https://doi.org/10.1093/rpd/ncm428
  • 33. May CC, Worsfold PJ, Keith-Roach MJ (2008) Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices. TrAC Trends Anal Chem 27(2):160–168
  • 34. Morsy Z, Abd El-Wahab M, El-Faramawy N (2012) Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy. Ann Nucl Energy 44:8–11. https://doi.org/10.1016/j.anucene.2012.01.003
  • 35. Moxham RM, Walker GW, Baumagardner LH (1955) Geologic and airbone radioactivity studies in the rock corral area, San Bernardino Country, California. U.S Geol. Survey Bull 1021:109–125
  • 36. Mozumder A, Upton AC, Luntz M, Tobias CA, B Milton Silverman J (2022) "radiation". Encyclopedia Britannica
  • 37. O’Connor BH, Donoghue AM, Manning TJH, Chesson BJ (2013) Radiological assessment for bauxite mining and alumina refining. Annals Occup Hyg 57(1):63–76. https://doi.org/10.1093/annhyg/mes052
  • 38. Okeson CD, Riley MR, Fernandez A, Wendt JO (2003) Impact of the composition of combustion generated fine particles on epithelial cell toxicity: influences of metals on metabolism. Chemosphere 51(10):1121–1128. https://doi.org/10.1016/S0045-6535(02)00721-X
  • 39. Özmen SF, Boztosun I, Yavuz M, Tunc MR (2014) Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution Gamma-ray spectrometry. Radiat Prot Dosimetry 158(4):461–465. https://doi.org/10.1093/rpd/nct267
  • 40. Prakash MM, Kaliprasad CS, Narayana Y (2017) Risk assessment due to inhalation of radon in coorg district, Karanatka. J Radioanal Nucl chem 314(3):2057–2067. https://doi.org/10.1007/s10967-017-5565-7
  • 41. Ramachandra TV, Ramakrishna YB, Krishnadas G, Sudarshan BP, Mahapatra DM, Bharath Aithal H (2012) Environmental profile and people’s livelihood aspects in the vicinity of coal based thermal power plant at Yellur Panchayat, Udupi District. CES Technical Report: 126, Energy & Wetlands Research Group, Centre for Ecological Sciences. Bangalore: Indian Institute of Science.
  • 42. Ramasamy V, Sundarrajan M, Paramasivama K, Meenakshisundaramd V, Suresh G (2013) Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India. J Appl Radiat Isot 73:21–31. https://doi.org/10.1016/j.apradiso.2012.11.014
  • 43. Ravisankar R, Kiruba S, Eswaran P, Senthilkumar G, Chandrasekaran A (2010) Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique. E J Chem 7:185–190. https://doi.org/10.1155/2010/643218
  • 44. Ross M, Nolan RP, Langer MA, Cooper WC (1993). In: Guthrie GD Jr, Mossman BT (eds) Health effects of mineral dusts. BookCrafters, Inc, Chelsea, Michigan, p 361
  • 45. Sambandam B, Islam VIH, Raman P, Bhattacharjee M, Balasubramanian A, Thiyagarajan D (2014) Coal fly ash nanoparticles induced cytotoxicity and oxidative DNA damage and apoptosis in Chang liver cells. Afr J Pharm Pharmacol 8(32):801–808. https://doi.org/10.5897/AJPP2014.4088
  • 46. Singh S, Rani A, Mahajan R (2005) 226 Ra, 232 Th and 40 K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39(4):431–439. https://doi.org/10.1016/j.radmeas.2004.09.003
  • 47. Singh NB, Agarwal A, De A, Singh P (2022) Coal fly ash: an emerging material for water remediation. Int J Coal Sci Technol 9(1):1–32
  • 48. Taskin H, Karavus Melda, Ay P, Topuzoglu Ahmet, Hindiroglu Seyhan, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli. Turk J Environ Radio 100(1):49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012
  • 49. Tian L, Shifeng D, Jianfang W, Yunchao H, Suzanne CH, Yiping Z, Donald L, Catherine PK (2008) Nanoquartz in Late Permian C1 coal and the high incidence of female lung cancer in the Pearl River Origin area: a retrospective cohort study. BMC Public Health 8(1):389–409. https://doi.org/10.1186/1471-2458-8-398
  • 50. Turhan S, Parmaksız A, Köse A, Yüksel A, Arıkan IH, Yücel B (2010) Radiological characteristics of pulverized fly ashes produced in Turkish coal-burning thermal power plants. Fuel 89(12):3892–3900. https://doi.org/10.1016/j.fuel.2010.06.045
  • 51. Turhan Ş, Arıkan IH, Köse A, Varinlioğlu A (2011) Assessment of the radiological impacts of utilizing coal combustion fly ash as main constituent in the production of cement. Environ Monit Assess 177(1):555–561. https://doi.org/10.1007/s10661-010-1656-4
  • 52. UNSCEAR (United Nations Scientific Committee on the effects of Atomic radiation) (2000) Sources exposures from natural sources of radiation. Report to the General Assembly, New York
  • 53. UNSCEAR (1977) Sources and effects of ionizing radiation. United nations scientific committee on the effects of atomic radiation. Report to the UN General Assembly, New York
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fadc389-0142-4019-906a-3603267fe0ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.