PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Gas Solubility in Ionic Liquids Using the Cosmo-Sac Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermodynamic principles for the dissolution of gases in ionic liquids (ILs) and the COSMO-SAC model are presented. Extensive experimental data of Henry’s law constants for CO2, N2 and O2 in ionic liquids at temperatures of 280-363 K are compared with numerical predictions to evaluate the accuracy of the COSMO-SAC model. It is found that Henry’s law constants for CO2 are predicted with an average relative deviation of 13%. Both numerical predictions and experimental data reveal that the solubility of carbon dioxide in ILs increases with an increase in the molar mass of ionic liquids, and is visibly more affected by the anion than by the cation. The calculations also show that the highest solubilities are obtained for [Tf2N]ˉ. Thus, the model can be regarded as a useful tool for the screening of ILs that offer the most favourable CO2 solubilities. The predictions of the COSMOSAC model for N2 and O2 in ILs differ from the pertinent experimental data. In its present form the COSMO-SAC model is not suitable for the estimation of N2 and O2 solubilities in ionic liquids.
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 16 poz., tab.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
autor
  • Polish Academy of Sciences, Institute of Chemical Engineering, ul. Baltycka 5, Gliwice, Poland
Bibliografia
  • 1. Anthony J.L., Anderson J.L., Maginn E.J., Brennecke J.F., 2005. Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B, 109, 6366-6374. DOI: 10.1021/jp0464041.
  • 2. Firaha D.Z., Paulechka Y.U., 2013. Kinetics of the synthesis of 1-alkyl-3-methylimidazolium ionic liquids in dilute and concentrated solutions. Int. J. Chem. Kinet., 45, 771-779. DOI: 10.1002/kin.20812.
  • 3. Klamt A., Jonas V., Bürger T., Lohrenz J.C.W., 1998. Refinement and parametrization of COSMO-RS. J. Phys. Chem. A, 102, 5074-5085. DOI: 10.1021/jp980017s.
  • 4. Kuo Y.C., Hsu C.C., Lin S.T., 2013. Prediction of phase behaviors of polymer − solvent mixtures from the COSMO-SAC activity coefficient model. Ind. Eng. Chem. Res., 52, 13505-13515. DOI: 10.1021/ie402175k.
  • 5. Lee B.S., Lin S.T., 2015. Screening of ionic liquids for CO2 capture using the COSMO-SAC model. Chem. Eng Sci., 121, 157-168. DOI: 10.1016/j.ces.2014.08.017.
  • 6. Lei Z., Dai C., Chen B., 2014. Gas solubility in ionic liquids. Chem. Rev., 114, 1289-1326. DOI: 10.1021/cr300497a.
  • 7. Mullins E., Oldland R., Liu Y.A., Wang S., Sandler S.I., Chen C.C., Zwolak M., Seavey K.C., 2006. Sigma- Profile Database for Using COSMO-Based Thermodynamic Methods. Ind. Eng. Chem. Res., 45, 4389-4415. DOI: 10.1021/ie060370h.
  • 8. National Institute of Standards and Technology, 2016. Thermophysical Properties of Fluid Systems. NIST Standard Reference Data website: http://webbook.nist.gov/chemistry/fluid/.
  • 9. Palomar J., Fero V.R., Torrecilla J.S., Rodriguez F., 2007. Density and molar volume predictions using COSMOR for ionic liquids. An approach to solvent design. Ind. Eng. Chem. Res., 46, 6041-6048. DOI: 10.1021/ie070445x.
  • 10. Privalova E.I., Mäki-Arvela P., Yu Murzin D., Mikkhola J.P., 2012. Capturing CO2: conventional versus ionicliquid based technologies. Russ. Chem. Rev., 81, 435-457. DOI: 10.1070/RC2012v081n05ABEH004288.
  • 11. Ramdin M., de Loos T.W., Vlugt T.J.H., 2012. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res., 51, 8149-8177. DOI: 10.1021/ie3003705.
  • 12. Sandler S.I. (ed.), 1994. Models for thermodynamic and phase equilibria calculations. Marcel Dekker, Inc., New York.
  • 13. Shah M.R., Anantharaj R., Banerjee T., Yadav G.D., 2013. Quaternary (liquid + liquid) equilibria for systems of imidazolium based ionic liquid + thiophene + pyridine + cyclohexane at 298.15 K: Experiments and quantum chemical predictions. J. Chem. Thermodynamics, 62, 142-150. DOI: 10.1016/j.jct.2013.02.020.
  • 14. Shah M.R., Yadav G.D., 2012. Prediction of liquid−liquid equilibria of (aromatic + aliphatic + ionic liquid) systems using the Cosmo-SAC model. J. Chem. Thermodynamics, 49, 62-69. DOI: 10.1016/j.jct.2012.01.012.
  • 15. Shimoyama Y., Ito A., 2010. Predictions of cation and anion effects on solubilities, selectivities and permeabilities for CO2 in ionic liquid using COSMO based activity coefficient model. Fluid Phase Equilib., 297, 178-182. DOI: 10.106/j.fluid.2010.03.026.
  • 16. Virginia Polytechnik Institute and State University, 2006. VT Sigma Profile Databases, Virginia Tech website: http://www.design.che.vt.edu/VT-Databases.html
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fad0371-94a2-471d-958c-ade140811ace
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.