Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Numerical simulations of tension and shear tests for a polycrystalline, anisotropic material were performed using crystal plasticity theory. The slip was considered here as the main mechanism of plastic deformation. Constitutive equations to describe the elastic-plastic deformation caused by the slip are presented. The generation and meshing of various shapes geometries (cubic and paddy shapes) with randomly-orientated grains by means of open source program NEPER program was shown. The Voronoi tessellation was used in order to include morphological properties of a crystalline material. The selected results of elastic-plastic analyses (stress, strain distributions and the macroscopic stress-strain resulting from homogenization) are presented here. The results obtained show the non-uniform distribution of stress and strain for different grains associated with their crystal orientation. The crystal plasticity finite element modelling of materials subjected to plastic deformation is important for microstructure-based mechanical predictions, as well as for the engineering design and to perform simulations involving not only the change of a material’s shape at a macro level but also the phenomena occurring in material in a micro-scale.
Wydawca
Rocznik
Tom
Strony
163--177
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
autor
- Department of Materials Forming and Processing, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
- Department of Materials Forming and Processing, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
- 1. Szala M., Winiarski G., Bulzak T.A., Wójcik Ł. Microstructure and Hardness of Cold Forged 42CrMo4 Steel Hollow Component with the Outer Flange. Advances in Science and Technology Research Journal. 2022; 16(4): 201–210. https://doi.org/10.12913/22998624/152790
- 2. Wojtacha A., Opiela M. Effect of Plastic Deformation on CCT-Diagram of Multi-Phase Forging Steel. Advances in Science and Technology Research Journal. 2021; 15(4): 72–80. https://doi.org/10.12913/22998624/142473
- 3. Chocyk D., Zientarski T. Effect of Nanoindentation Rate on Plastic Deformation in Cu Thin Films. Advances in Science and Technology Research Journal. 2022; 16(1): 170–179. https://doi.org/10.12913/22998624/142775
- 4. Yang G., Park S.-J. Deformation of Single Crystals, Polycrystalline Materials, and Thin Films: A Review. Materials. 2019; 12: 2003. https://doi.org/10.3390/ma12122003.
- 5. Subrahmanyam Pattamatta A.S.L., Srolovitz D.J. Allotropy in ultrahigh strength materials. Nature Communications. 2022; 13: 3326. https://doi.org/10.1038/s41467-022-30845-z
- 6. Zecevic M., Lebensohn R.A., McCabe R.J., Knezevic M. Modeling of intragranular misorientation and grain fragmentation in polycrystalline materials using the viscoplastic self-consistent formulation. International Journal of Plasticity. 2018; 109: 193–211. https://doi.org/10.1016/j.ijplas.2018.06.004
- 7. Khan R., Pervez T., Alfozan A., Qamar S.Z., Mohsin S. Numerical Modeling and Simulations of Twinning-Induced Plasticity Using Crystal Plasticity Finite Element Method. Crystals. 2022; 12, 930. https://doi.org/10.3390/cryst12070930.
- 8. Kazim S.M., Prasad K., Chakraborty P. A Novel Homogenized Crystal Plasticity Model for Near α and α + β Titanium Alloys. Transitions of the Indian National Academy of Engineering. 2022; 7: 441–447. https://doi.org/10.1007/s41403-021-00297-w
- 9. Roters F., Eisenlohr P., Hantcherli L., Tjahjanto D.D., Bieler T.R., Raabe T. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia. 2010; 58(4): 1152–1211. https://doi.org/10.1016/j.actamat.2009.10.058
- 10. Ryś M., Forest S., Petryk H. A micromorphic crystal plasticity model with the gradient-enhanced incremental hardening law. International Journal of Plasticity. 2020; 128: 102655. https://doi.org/10.1016/j.ijplas.2019.102655
- 11. Kowalczyk-Gajewska K., Mróz Z., Pęcherski R.B. Micromechanical modelling of polycrystalline materials under non-proportional deformation paths. Archives of Metallurgy and Materials. 2007; 52(2): 181–192.
- 12. Kowalczyk-Gajewska K., Szwiertnia K., Kawałko J., Wierzbanowski K., Wronski M., Frydrych K., Stupkiewicz S., Petryk H. Texture evolution in titanium on complex deformation paths: Experiment and modeling. Materials Science and Engineering: A. 2015; 637: 251–263. https://doi.org/10.1016/j.msea.2015.04.040
- 13. Petryk H. A quasi-extremal energy principle for non-potential problems in rate-independent plasticity. Journal of Mechanics and Physics of Solids. 2020; 136: 103691. https://doi.org/10.1016/j.jmps.2019.103691
- 14. Frydrych K. Simulations of grain refinement in various steels using the three-scale crystal plasticity model. Metallurgical and Materials Transactions A. 2019; 50(10): 4913–4919. https://doi.org/10.1007/s11661-019-05373-z
- 15. Frydrych K., Kowalczyk-Gajewska K. A threescale crystal plasticity model accounting for grain refinement in FCC metals subjected to severe plastic deformations. Materials Science and Engineering: A 2016; 658: 490–502. https://doi.org/10.1016/j.msea.2016.01.101
- 16. Roters F., Eisenlohr P., Bieler T.R. and Raabe D. Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. Wiley, 2010.
- 17. Riddle S.K., Wilson T.R., Rajivmoorthy M., Eberhart M.E. Principles Determining the Structure of Transition Metals. Molecules. 2021; 26: 5396. https://doi.org/10.3390/molecules26175396
- 18. Lehtinen A., Laurson L., Granberg F., Nordlund K., Alva M.J. Effects of precipitates and dislocation loops on the yield stress of irradiated iron. Scientific Reports. 2018; 8: 6914. https://doi.org/10.1038/s41598-018-25285-z
- 19. Girard G., Frydrych K., Kowalczyk-Gajewska K., Martiny M., Mercier S. Cyclic response of electrodeposited copper films. Experiments and elastic–viscoplastic mean-field modeling. Mechanics of Materials. 2021; 153: 103685. https://doi.org/10.1016/j.mechmat.2020.103685
- 20. Kursa M. Modeling of plastic deformation in metal crystals by incremental energy minimization. Institute of Fundamental Technological Research Polish Academy of Sciences, 2010.
- 21. Dakshinamurthy M., Kowalczyk-Gajewska K., Vadillo G. Influence of crystallographic orientation on the void growth at the grain boundaries in bicrystals. International Journal of Solids and Structures. 2021; 212: 61–79. https://doi.org/10.1016/j.ijsolstr.2020.11.035
- 22. Petryk H., Stupkiewicz S., Kucharski S. On direct estimation of hardening exponent in crystal plasticity from the spherical indentation test. International Journal of Solids and Structures. 2017; 112: 209–221. https://doi.org/10.1016/j.ijsolstr.2016.09.025
- 23. Mánik T., Asadkandi H.M., Holmedal M. A robust algorithm for rate-independent crystal plasticity. Computer Methods in Applied Mechanics and Engineering. 2022; 393: 114831. https://doi.org/10.1016/j.cma.2022.114831
- 24. Frydrych K. Modeling of the evolution of the microstructure of metals with high specific strength in the processes of intensive plastic deformation. Institute of Fundamental Technological Research Polish Academy of Sciences, 2017.
- 25. Frydrych K., Jarzębska A., Virupakshi S., Kowalczyk-Gajewska K., Bieda M., Chulist R., Skorpuska M., Schell N., Sztwiernia K. Texture-based optimization of crystal plasticity parameters: application to zinc and its alloy. Metallurgical and Materials Transactions A – Physical Metallurgy and Materials Science. 2021; 52(8): 3257–3273. https://doi.org/10.1007/s11661-021-06285-7
- 26. Frydrych K., Libura T., Kowalewski Z., Maj M., Kowalczyk-Gajewska K. On the role of slip, twinning and detwinning in magnesium alloy AZ31B sheet. Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing. 2021; 813: 141152. https://doi.org/10.1016/j.msea.2021.141152
- 27. Frydrych K., Maj M., Urbański L., Kowalczyk-Gajewska K. Twinning-induced anisotropy of mechanical response of AZ31B extruded rods. Materials Science & Engineering A. 2020; 771: 138610. https://doi.org/10.1016/j.msea.2019.138610
- 28. Kowalczyk-Gajewska K., Stupkiewicz S., Frydrych K., Petryk H. Modelling of Texture Evolution and Grain Refinement on Complex SPD Paths. IOP Conference Series: Materials Science and Engineering. 2014; 63: 012040. http://iopscience.iop.org/1757-899X/63/1/012040
- 29. Rezaee-Hajidehi M., Sadowski P., Stupkiewicz S. Deformation twinning as a displacive transformation: Finite-strain phase-field model of coupled twinning and crystal plasticity. Journal of the Mechanics and Physics of Solids. 2022; 163: 104855. https://doi.org/10.1016/j.jmps.2022.104855
- 30. Nguyen K., Zhang M., Amores V.J., Sanz M.A., Montáns F.J. Computational Modeling of Dislocation Slip Mechanisms in Crystal Plasticity: A Short Review. Crystals. 2021; 11: 42. https://doi.org/10.3390/cryst11010042
- 31. Kowalczyk-Gajewska K. Modelling of texture evolution in metals accounting for lattice reorientation due to twinning. European Journal of Mechanics – A/Solids. 2010; 29(1): 28–41. https://doi.org/10.1016/j.euromechsol.2009.07.002
- 32. Yaghoobi M., Ganesan S., Sundar S., Lakshmanan A., Rudraraju S., Allison J.E., Sundararaghavan V. PRISMS – Plasticity: An open-source crystal plasticity finite element software. Computational Materials Science. 2019; 169: 109078. https://doi.org/10.1016/j.commatsci.2019.109078
- 33. Kucharski S., Stupkiewicz S., Petryk H. Surface Pile-Up Patterns in Identation Testing of Cu Single Crystals. Experimental Mechanics. 2014; 54: 957–969. https://doi.org/10.1007/s11340-014-9883-1
- 34. Lu D., Zhang K., Hu G., Lan Y., Chang Y. Investigation of Yield Surfaces Evolution for Polycrystalline Aluminum after Pre-Cyclic Loading by Experiment and Crystal Plasticity Simulation. Materials. 2020; 13: 3069. https://doi.org/10.3390/ma13143069
- 35. Nguyen N., Wass A.M. Nonlinear, finite deformation, finite element analysis. Journal of Applied Mathematics and Physics. 2016; 67: 35. https://doi.org/10.1007/s00033-016-0623-5
- 36. Han X., Besson J., Forest S., Tanguy B., Bugat S. A yield function for single crystals containing voids. International Journal of Solids and Structures. 2013; 50(14–15): 2115–2131. https://doi.org/10.1016/j.ijsolstr.2013.02.005
- 37. Kowalczyk K., Gambin W. Model of plastic anisotropy evolution with texture-dependent yield surface. International Journal of Plasticity. 2004; 20: 19–54. https://doi.org/10.1016/S0749-6419(03)00010-X
- 38. Dawson P.R., Boyce D.E., Park J.S., Wielewski E., Miller M.P. Determining the strengths of HCP slip systems using harmonic analyses of lattice strain distributions. Acta Materialia. 2018; 144: 92–106. https://doi.org/10.1016/j.actamat.2017.10.032
- 39. Zhang K.S., Shi Y.K., Ju J.W. Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal. Mechanics of Materials. 2013; 64: 76–90. https://doi.org/10.1016/j.mechmat.2013.05.001
- 40. Engel B., Huth M., Hyde C. Numerical Investigation into the Influence of Grain Orientation Distribution on the Local and Global Elastic-Plastic Behaviour of Polycrystalline Nickel-Based Superalloy INC-738 LC. Crystals. 2022; 12: 100. https://doi.org/10.3390/cryst12010100
- 41. Turkmen H.S., Miller M.P., Dawson P.R., Moosbrugger J.C. A Slip-Based Model for Strength Evolution During Cyclic Loading. Journal of Engineering Materials and Technology. 2004; 126: 329–338. https://doi.org/10.1115/1.1789967.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4fa1aed3-5ee2-451d-bbd6-53d638c594d2