PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical corrosion of aluminium alloy AA1050, processed by accumulative roll bonding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To investigate the changes in corrosion behaviour of severely deformed by accumulative roll bonding aluminium alloy AA1050. Design/methodology/approach: To determine the influence of the accumulative roll bonding on microstructure, texture, and grain size, electron backscattered diffraction was used. Corrosion behaviour was evaluated in a 3.5 wt.% sodium chloride water solution using anodic polarisation. Findings: It was found out that accumulative roll bonding up to eight cycles led to an increase in corrosion rate compared to annealed alloy, but the increase in the number of cycles of accumulative roll bonding from two to eight shows a tendency toward lowering corrosion rates. It has a beneficial influence on pitting corrosion susceptibility. Research limitations/implications: The presented research focuses only on the influence of texture and grain size on severely deformed aluminium alloy AA1050 corrosion. Other factors, such as accumulated during deformation stresses, could also play their role in the corrosion process. Originality/value: The paper reports results on the influence of two factors – texture and grain size, on the corrosion of severely deformed aluminium alloy AA1050. Most reports on the topic include only the influence of texture or grain size.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Department of Materials Science and Technology, University of Ruse “Angel Kanchev”, 8 Studentska st., POB 7017, Ruse, Bulgaria
autor
  • Department of Materials Science and Technology, University of Ruse “Angel Kanchev”, 8 Studentska st., POB 7017, Ruse, Bulgaria
Bibliografia
  • 1. Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Structural evolutions of metallic materials processed by severe plastic deformation, Materials Science and Engineering: R: Reports 133 (2018) 1-59. DOI: https://doi.org/10.1016/j.mser.2018.06.001
  • 2. M. Ebrahimi, Q. Wang, Accumulative roll-bonding of aluminum alloys and composites: An overview of properties and performance, Journal of Materials Research and Technology 19 (2022) 4381-4403. DOI: https://doi.org/10.1016/j.jmrt.2022.06.175
  • 3. M. Koralnik, B. Adamczyk-Cieślak, M. Kulczyk, J. Mizera, The effect of deformation degree on the microstructure of the 6060 aluminium alloy, Archives of Materials Science and Engineering 85/2 (2017) 80-85. DOI: https://doi.org/10.5604/01.3001.0010.3429
  • 4. J. Hirisch, Texture and anisotropy in industrial, Archives of Metallurgy and Materials 50/1 (2005) 21-34.
  • 5. P. Snopiński, T. Tański, O. Hilšer, A. Lubos, Effect of ECAP process on structure and hardness of AlMg3 aluminium alloy, Archives of Materials Science and Engineering 84/2 (2017) 79-85. DOI: https://doi.org/10.5604/01.3001.0010.0982
  • 6. M. Karoń, A. Kopyść, M. Adamiak, J. Konieczny, Microstructure and mechanical properties of the annealed 6060 aluminium alloy processed by ECAP method, Archives of Materials Science and Engineering 80/1(2016) 31-36. DOI: https://doi.org/10.5604/18972764.1229616
  • 7. P. Snopiński, T. Tański, K. Labisz, S. Rusz, P. Jonsta, M. Król, Wrought aluminium-magnesium alloys subjected to SPD processing, International Journal of Materials Research 107/7 (2016) 637-645. DOI: https://doi.org/10.3139/146.111383
  • 8. M. Vakili, E. Borhani, A. Ashrafi, Corrosion Behavior of Nano-/Ultrafine-Grained Al-0.2 wt.% Sc Alloy Produced by Accumulative Roll Bonding (ARB), Journal of Materials Engineering and Performance 27 (2018) 4253-4260. DOI: https://doi.org/10.1007/s11665-018-3489-1
  • 9. W. Wei, K. Xia Wei, Q.B. Du, Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding, Materials Science and Engineering: A 454-455 (2007) 536-541. DOI: https://doi.org/10.1016/j.msea.2006.11.063
  • 10. M.M. Taherian, M. Yousefpour, E. Borhani, The effect of ARB process on corrosion behavior of nano¬structured aluminum alloys in Na2HPO4·12H2O and Zn(NO3)2·6H2O PCMs, Engineering Failure Analysis 107 (2020) 104222. DOI: https://doi.org/10.1016/j.engfailanal.2019.104222
  • 11. S. Pashangeh, M. Alizadeh, R. Amini, Structural and corrosion behavior investigation of novel nano-quasicrystalline Al-Cr-Fe reinforced Al-matrix composites produced by ARB process, Journal of Alloys and Compounds 890 (2022) 161774. DOI: https://doi.org/10.1016/j.jallcom.2021.161774
  • 12. A. Fattah-alhosseini, S.O. Gashti, Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution, Journal of Materials Engineering and Performance 24/9 (2015) 3386-3393. DOI: https://doi.org/10.1007/s11665-015-1627-6
  • 13. S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, Microstructure, mechanical properties and electrochemical behavior of AA1050 processed by accumulative roll bonding (ARB), Journal of Alloys and Compounds 688B (2016) 44-55. DOI: https://doi.org/10.1016/j.jallcom.2016.07.177
  • 14. J. Hrbac, V. Halouzka, L. Trnkova, J. Vacek, eL-Chem Viewer: A Freeware Package for the Analysis of Electroanalytical Data and Their Post-Acquisition Processing, Sensors 14/8 (2014) 13943-13954. DOI: https://doi.org/10.3390/s140813943
  • 15. S. Gollapudi, Grain size distribution effects on the corrosion behaviour of materials, Corrosion Science 62 (2012) 90-94. DOI: https://doi.org/10.1016/j.corsci.2012.04.040
  • 16. K. Ralston, N. Birbilis, C. Davies, Revealing the relationship between grain size and corrosion rate of metals, Scripta Materialia 63/12 (2010) 1201-1204. DOI: https://doi.org/10.1016/j.scriptamat.2010.08.035
  • 17. C. Vargel, Corrosion of Aluminium, 2nd Edition, Elsevier, Amsterdam, 2020. DOI: https://doi.org/10.1016/C2012-0-02741-X
  • 18. G.M. Treacy, C.B. Breslin, Electrochemical studies on single-crystal aluminium surfaces, Electrochimica Acta 43/12-13 (1998) 1715-1720. DOI: https://doi.org/10.1016/S0013-4686(97)00305-8
  • 19. P.T. Brewick, N. Kota, A.C. Lewis, V.G. DeGiorgi, A.B. Geltmacher, S.M. Qidwai, Microstructure-sensitive modeling of pitting corrosion: Effect of the crystallographic orientation, Corrosion Science 129 (2017) 54-69. DOI: https://doi.org/10.1016/j.corsci.2017.09.009
  • 20. B. Davis, P.J. Moran, P.M. Natishan, Metastable pitting behavior of aluminum single crystals, Corrosion Science 42/12 (2000) 2187-2192. DOI: https://doi.org/10.1016/S0010-938X(00)00032-9
  • 21. X. Zhang, X. Zhou, T. Hashimoto, B. Liu, Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting, Materials Characterization 130 (2017) 230-236. DOI: https://doi.org/10.1016/j.matchar.2017.06.022
  • 22. Y. Takayama, K. Nohara, H. Kato, Influence of Crystallographic Orientation on Corrosion Behavior of 5N Purity Aluminum, Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan, 2010, 1469-1474.
  • 23. J.-H. Jeong, C.-H. Choi, D.N. Lee, A model for the <100> crystallographic tunnel etching of aluminium, Journal of Materials Science 31 (1996) 5811-5815. DOI: https://doi.org/10.1007/BF01160833
  • 24. L. Fan, H. Lu, J. Leng, Z. Sun, C.C. Chen, The effect of crystal orientation on the aluminum anodes of the aluminum–air batteries in alkaline electrolytes, Journal of Power Sources 299 (2015) 66-69. DOI: https://doi.org/10.1016/j.jpowsour.2015.08.095
  • 25. W. Wang, A. Alfantazi, Correlation between grain orientation and surface dissolution of niobium, Applied Surface Science 335 (2015) 223-226. DOI: https://doi.org/10.1016/j.apsusc.2015.01.208
  • 26. J.H. Seo, J.-H. Ryu, D.N. Lee, Formation of crystallographic etch pits during ac etching of aluminum, Journal of The Electrochemical Society 150/ 9 (2003) B433. DOI: https://doi.org/10.1149/1.1596952
  • 27. M. Yasuda, F. Weinberg, D. Tromans, Pitting Corrosion of Al and Al‐Cu Single Crystals, Journal of The Electrochemical Society 137/12 (1990) 3708. DOI https://doi.org/10.1149/1.2086291
  • 28. T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Structure of Cu deformed by high pressure torsion, Acta Materialia 53/2 (2005) 393-402. DOI: https://doi.org/10.1016/j.actamat.2004.09.043
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f9fbf1d-1637-482f-9822-2ea52d2a604e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.