PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Prediction of the Tonal Airborne Noise for a NACA 0012 Aerofoil at Moderate Reynolds Number Using a Transitional URANS Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tonal airborne noise of aerofoils appears in a limited range of moderate Reynolds numbers and angles of attack. In these specific conditions, the aerofoil is characterised by a large region of laminar flow over the aerodynamic surface, typically resulting in two-dimensional laminar instabilities in the boundary layer, generating one or more acoustic tones. The numerical simulation of such phenomenon requires, beside an accurate prediction of the unsteady flow field, a proper modelling of the laminar to turbulent transition of the boundary layer, which generally imposes the use of highly CPU demanding approaches such as large eddy simulation (LES) or direct numerical simulation (DNS). This paper aims at presenting the results of numerical experiments for evaluating the capability of capturing the tonal airborne noise by using an advanced, yet low computationally demanding, unsteady Reynolds-averaged Navier-Stokes (URANS) turbulence model augmented with a transitional model to account for the laminar to turbulent transition. This approach, coupled with the Ffowcs Williams and Hawkings (FW-H) acoustic analogy, is adopted for predicting the far-field acoustic sound pressure of a NACA 0012 aerofoil with Reynolds number ranging from 0.39 · 106 to 1.09 · 106. The results show a main tone located approximately at 1.6–1.8 kHz for a Reynolds number equal to 0.62 · 106, increasing to 2.4 kHz at Reynolds number equal to 0.85 · 106 and 3.4 kHz at 1.09 · 106, while no main tones are observed at 0.39 · 106. The computed spectra confirm that the acoustic emission of the aerofoil is dominated by tonal structures and that the frequency of the main tone depends on the Reynolds number consistently with the ladder-like tonal structure suggested by Paterson et al. Moreover, in specific conditions, the acoustic spectra exhibit a multi-tonal structure visible in narrowband spectra, in line with the findings of Arbey and Bataille. The presented results demonstrate the capability of the numerical model of predicting the physics of the tonal airborne noise generation.
Rocznik
Strony
653--675
Opis fizyczny
Bibliogr. 42 poz., fot., rys., tab., wykr.
Twórcy
  • AIT, Austrian Institute of Technology GmbH, Center for Low-Emission Transport, Giefinggasse 2, Vienna, 1210, Austria
autor
  • AIT, Austrian Institute of Technology GmbH, Center for Low-Emission Transport, Giefinggasse 2, Vienna, 1210, Austria
autor
  • AIT, Austrian Institute of Technology GmbH, Center for Low-Emission Transport, Giefinggasse 2, Vienna, 1210, Austria
Bibliografia
  • 1. ANSYS-Fluent 14.5 Theory Guide, ANSYS Inc., 2012.
  • 2. Arbey H., Bataille J. (1983), Noise generated by aerofoil profiles placed in a uniform laminar flow, Journal of Fluid Mechanics, 134, 33-47.
  • 3. Arcondoulis E. J. G., Doolan C. J., Brooks L. A., Zander A. C. (2011), Aerofoil trailing edge noise source location at low to moderate Reynolds number, AIAA 2011-2785, 17th AIAA/CEAS Aeroacoustic Conference, Portland, Oregon.
  • 4. Arcondoulis E. J. G., Doolan C. J., Zander A. C., Brooks L. A. (2013), An experimental investigation of airfoil tonal noise, Proceedings of Acoustics, Victor Harbor, Australia.
  • 5. Bies D. A., Hansen C. H. (2009), Engineering noise control, 4th Ed., Taylor & Francis Spon Press.
  • 6. Brentner K. S., Farassat F. (1998), An analytical comparison of the acoustic analogy and Kirchhoff formulations for moving surfaces, AIAA Journal, 36, 8, 1379-1386, doi: 10.2514/2.558.
  • 7. Brooks T. F., Pope D., Marcolini A. (1989), Aerofoil self-noise and prediction, NASA Reference Publication 1218.
  • 8. Chong T. P., Joseph P. F., Kingan M. J. (2013), An investigation of airfoil tonal noise at different Reynolds numbers and angles of attack, Applied Acoustics, 74, 1, 38-48.
  • 9. Curle N. (1953), The mechanics of edge tones, Proceedings of the Royal Society A, 216, 1126, 412-424, doi: 10.1098/rspa.1953.0030.
  • 10. De Gennaro M., Kuehnelt H. (2011), Semiempirical modelling of broadband noise for aerofoils, AIP Conference Series, 1389, 1498-1502.
  • 11. De Gennaro M., Kuehnelt H. (2012a), Broadband noise modelling and prediction for axial Fans, Proceedings of the International Conference Fan Noise, Technology and Numerical Methods, Paris, France.
  • 12. De Gennaro M., Kuehnelt H. (2012b), CPU efficient flow-acoustic design for axial fans, SAE Technical Paper 2012-01-1564.
  • 13. De Gennaro M., Zanon A., Kuehnelt H., Giannattasio P. (2012), Zonal large eddy simulation for numerical prediction of the acoustic performance of an axial fan, 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria.
  • 14. Desquesnes M., Terracol M., Sagaut P. (2007), Numerical investigation of the tone noise mechanism over laminar aerofoils, Joural of Fluid Mechanics, 591, 155-182, doi: 10.1017/S0022112007007896.
  • 15. Ewert R., Schröder W. (2003), Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational Physics, 188, 365-398.
  • 16. Ewert R., Schröder W. (2004), On the simulation of trailing edge noise with a hybrid LES/APE method, Journal of Sound and Vibration, 270, 509-524.
  • 17. Ffowcs-Williams E., Hawkings D. L. (1969), Sound Generation by Turbulence and Surfaces in Arbitrary Motion, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264, 1151, 321-342.
  • 18. Fuglsang P., Madsen H. A. (1996), Implementation and verification of an aeroacoustic noise prediction model for wind turbines, Risø-R-867(EN).
  • 19. Golubev V., Nguyen L., Mankbadi R., Roger M., Visbal M. (2014), On flow-acoustic resonant interactions in transitional airfoils, International Journal of Aeroacoustics, 13, 1, 1-38, doi: 10.1260/1475-472X.13.1-2.1.
  • 20. Jones L. E., Sandberg R. D. (2011), Numerical analysis of tonal aerofoil self-noise and acoustic feedbackloops, Journal of Sound and Vibration, 330, 6137-6152.
  • 21. Jones L. E., Sandberg R. D., Sandham N. D. (2008), Direct numerical simulations of forced and unforced separation bubble on an aerofoil at incidence, Journal of Fluid Mechanics, 602, 175-207.
  • 22. Jones L. E., Sandberg R. D., Sandham N. D. (2010), Stability and Receptivity Characteristics of Laminar Separation Bubble on an Aerofoil, Journal of Fluid Mechanics, 648, 257-296.
  • 23. Kingan M. J., Pearse J. B. (2009), Laminar Boundary Layer Instability Noise Produced by an Aerofoil, Journal of Sound and Vibration, 322, 808-828.
  • 24. Kurotaki T., Sumi T., Atobe T., Hijama J. (2008), Numerical simulation around NACA0015 with tonal noise generation, AIAA Paper 2008-0672.
  • 25. Lighthill M. J. (1952), On sound generated aerodynamically: I. General theory, Proceedings of the Royal Society A, 211, 1107, 564-587, doi: 10.1098/rspa.1952.0060.
  • 26. Lighthill M. J. (1954), On sound generated aerodynamically: II. Turbulence as a source of sound, Proceedings of the Royal Society A, 222, 1148, 1-32, doi: 10.1098/rspa.1954.0049.
  • 27. Mari C., Jeandel D., Mathieu J. (1976), Methode de calcul de couche limite turbulente compressible avec transfert de chaleur, Interational Journal of Heat and Mass Transfer, 19, 893-899.
  • 28. Mathworks Inc., 2011. Matlab, the Language of Technical Computing Manual.
  • 29. McAlpine A., Nash E. C., Lowson M. V. (1999), On the generation of discrete frequency tones by the flow around an aerofoil, Journal of Sound and Vibration, 222, 753-779.
  • 30. Menter F. R. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32, 8, 1598-1605.
  • 31. Menter F. R., Langstry R. B., Likki S. R., Suzen Y. B., Huang P. G., Volker S. (2004), A correlation based transition model using local variables, Part-1, Model Formulation, ASME-GT2004-53452.
  • 32. Nakano T., Fujisawa N., Lee S. (2006), Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 aerofoil, Experiments in Fluids, 40, 482-490.
  • 33. Nash E. C., Lowson M. V., McAlpine A. (1999), Boundary layer instability noise on aerofoils, Journal of Fluid Mechanics, 382, 27-61.
  • 34. Oerlemans S. (2004), Wind tunnel aeroacoustic tests of six aerofoils for use on small wind turbines, National Aerospace Laboratory NLR, NREL/SR-500-35339.
  • 35. Oerlermans S., Migliore P. (2004), Aeroacoustic wind tunnel tests of wind turbine aerofoils, AIAA Paper 2004-3042.
  • 36. Paterson R., Vogt P., Fink M., Munch C. (1973), Vortex noise of isolated aerofoils, Journal of Aircraft, 10, 296-302.
  • 37. Plogmann B., Würz W. (2013), Aeroacoustic measurements on a NACA 0012 applying the Coherent Particle Velocity method, Experiments in Fluids, 54, 7, doi: 10.1007/s00348-013-1556-9.
  • 38. Pröbsting S., Scarano F., Morris S.C. (2015), Regimes of tonal noise on an airfoil at moderate Reynolds number, Journal of Fluid Mechanics, 780, 407-438.
  • 39. Rozenberg Y., Roger M., Moureau S. (2008), Fan blade trailing edge noise prediction using RANS simulation, Proceedings of the Euronoise Conference, Paris, France.
  • 40. Schlichting H. (1979), Boundary layer theory, Mc-Graw Hill.
  • 41. Tam C. K. W., Ju H. (2012), Aerofoil tones at moderate Reynolds number, Journal of Fluid Mechanics, 690, 536-570.
  • 42. Wilcox D. C. (2010), Turbulence modeling for CFD, DCW Industries, 3rd Ed.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f9a0e54-ebf4-4f41-be96-5364975597dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.