PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Average intensity of a partially coherent anomalous hollow beam propagating in underwater oceanic turbulence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the extended Huygens–Fresnel principle, the cross-spectral density function of a partially coherent anomalous hollow beam (AHB) propagating in underwater oceanic turbulence has been derived. The average intensity of partially coherent AHB propagating in underwater oceanic turbulence has been calculated. The influences of coherence length and the strength of underwater oceanic turbulence on the spreading properties of partially coherent AHB are illustrated and analyzed using numerical examples. It is found that the partially coherent AHB with smaller coherence length and the partially coherent AHB propagating in stronger underwater oceanic turbulence will lose the initial beam profile and evolve into the Gaussian beam faster. The results are useful in applications for underwater wireless optical communication.
Czasopismo
Rocznik
Strony
227--239
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Department of Physics, College of Science, Dalian Maritime University, Dalian, 116026, China
autor
  • Department of Physics, College of Science, Dalian Maritime University, Dalian, 116026, China
  • Department of Physics, College of Science, Dalian Maritime University, Dalian, 116026, China
autor
  • Department of Physics, College of Science, Dalian Maritime University, Dalian, 116026, China
  • Department of Physics, College of Science, Dalian Maritime University, Dalian, 116026, China
Bibliografia
  • [1] CAI Y., CHEN C., WANG F., Modified hollow Gaussian beam and its paraxial propagation, Optics Communications 278(1), 2007, pp. 34–41, DOI: 10.1016/j.optcom.2007.06.012.
  • [2] CHEN Y., CAI Y., EYYUBOĞLU H.T., BAYKAL Y., Scintillation properties of dark hollow beams in a weak turbulent atmosphere, Applied Physics B 90(1), 2008, pp. 87–92, DOI: 10.1007/s00340-007-2825-1.
  • [3] LIU D., ZHOU Z., Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis, Journal of Optics A: Pure and Applied Optics 10(9), 2008, article ID 095005, DOI: 10.1088/1464-4258/10/9/095005.
  • [4] WANG H., LI X., Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere, Optics and Lasers in Engineering 48(1), 2010, pp. 48–57, DOI: 10.1016/j.optlaseng.2009.07.014.
  • [5] LIU D., WANG Y., WANG G., YIN H., Propagation properties of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere, Journal of the Optical Society of Korea 20(1), 2016, pp. 1–7.
  • [6] LIU D., WANG Y., YIN H., Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence, Applied Optics 54(35), 2015, pp. 10510–10516, DOI: 10.1364/AO.54.010510.
  • [7] LIU D., WANG G., LUO X., YIN H., WANG Y., Evolution properties of a partially coherent flat-topped vortex hollow beam propagating in uniaxial crystals orthogonal to the optical axis, Journal of the Optical Society of Korea 20(6), 2016, pp. 686–693.
  • [8] WU Y., LI J., WU J., Anomalous hollow electron beams in a storage ring, Physical Review Letters 94(13), 2005, article ID 134802, DOI: 10.1103/PhysRevLett.94.134802.
  • [9] CAI Y., Model for an anomalous hollow beam and its paraxial propagation, Optics Letters 32(21), 2007, pp. 3179–3181, DOI: 10.1364/OL.32.003179.
  • [10] CAI Y., WANG Z., LIN Q., An alternative theoretical model for an anomalous hollow beam, Optics Express 16(19), 2008, pp. 15254–15267, DOI: 10.1364/OE.16.015254.
  • [11] LIU D., ZHOU Z., Analytical vectorial structure of the anomalous hollow beam in the far field, Optics and Laser Technology 42(4), 2010, pp. 640–646, DOI: 10.1016/j.optlastec.2009.11.003.
  • [12] WANG K., ZHAO C., XU B., Propagation of anomalous hollow beam through a misaligned first-order optical system, Optics and Laser Technology 42(8), 2010, pp. 1218–1222, DOI: 10.1016/j.optlas tec.2010.03.013.
  • [13] LU X., ZHU X., WANG K., ZHAO C., CAI Y., Effects of biological tissues on the propagation properties of anomalous hollow beams, Optik 127(4), 2016, pp. 1842–1847, DOI: 10.1016/j.ijleo.2015.11.039.
  • [14] TIAN H., XU Y., YANG T., MA Z., WANG S., DAN Y., Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path, Journal of Modern Optics 64(4), 2017, pp. 422–429, DOI: 10.1080/09500340.2016.12 41441.
  • [15] KOROTKOVA O., FARWELL N., Effect of oceanic turbulence on polarization of stochastic beams, Optics Communications 284(7), 2011, pp. 1740–1746, DOI: 10.1016/j.optcom.2010.12.024.
  • [16] TANG M., ZHAO D., Propagation of radially polarized beams in the oceanic turbulence, Applied Physics B 111(4), 2013, pp. 665–670, DOI: 10.1007/s00340-013-5394-5.
  • [17] XU J., ZHAO D., Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence, Optics and Laser Technology 57, 2014, pp. 189–193, DOI: 10.1016/j.optlastec.2013.10.019.
  • [18] ZHOUY., CHEN Q., ZHAO D., Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence, Applied Physics B 114(4), 2014, pp. 475–482, DOI: 10.1007/s00340-013-5545-8.
  • [19] HUANG Y., ZHANG B., GAO Z., ZHAO G., DUAN Z., Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence, Optics Express 22(15), 2014, pp. 17723–17734, DOI: 10.1364/OE.22.017723.
  • [20] DONG Y., GUO L., LIANG C., WANG F., CAI Y., Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence, Journal of the Optical Society of America A 32(5), 2015, pp. 894 –901, DOI: 10.1364/JOSAA.32.000894.
  • [21] BAYKAL Y., Higher order mode laser beam intensity fluctuations in strong oceanic turbulence, Optics Communications 390, 2017, pp. 72–75, DOI: 10.1016/j.optcom.2016.12.072.
  • [22] LIU D., WANG Y., Average intensity of a Lorentz beam in oceanic turbulence, Optik 144, 2017, pp. 76 –85, DOI: 10.1016/j.ijleo.2017.06.078.
  • [23] LIU D., WANG G., WANG Y., Average intensity and coherence properties of a partially coherent Lorentz–Gauss beam propagating through oceanic turbulence, Optics and Laser Technology 98, 2018, pp. 309–317, DOI: 10.1016/j.optlastec.2017.08.011.
  • [24] LIU D., YIN H., WANG G., WANG Y., Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence, Applied Optics 56(31), 2017, pp. 8785–8792, DOI: 10.1364/AO.56.0 08785.
  • [25] LIU D., WANG Y., LUO X., WANG G., YIN H., Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence, Journal of Modern Optics 64(16), 2017, pp. 1579–1587, DOI: 10.1080/09500340.2017.1300698.
  • [26] LIU D., WANG Y., WANG G., LUO X., YIN H., Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence, Laser Physics 27(1), 2017, article ID 016001, DOI: 10.1088/1555-6611/27/1/016001.
  • [27] LIU D., CHEN L., WANG Y., WANG G., YIN H., Average intensity properties of flat-topped vortex hollow beam propagating through oceanic turbulence, Optik 127(17), 2016, pp. 6961–6969, DOI: 10.1016/j.ijleo.2016.04.142.
  • [28] LIU D., WANG Y., WANG G., YIN H., WANG J., The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam, Optics and Laser Technology 82, 2016, pp. 76–81, DOI: 10.1016/j.optlastec.2016.02.019.
  • [29] WANG Z., LU L., ZHANG P., FAN C., JI X., Broadening of ultra-short pulses propagating through weak-to-strong oceanic turbulence, Optics Communications 367, 2016, pp. 95–101, DOI: 10.1016/ j.optcom.2016.01.013.
  • [30] HUANG Y., HUANG P., WANG F., ZHAO G., ZENG A., The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite–Gaussian linear array beams, Optics Communications 336, 2015, pp. 146–152, DOI: 10.1016/j.optcom.2014.09.055.
  • [31] LU L., WANG Z., ZHANG J., ZHANG P., QIAO C., FAN C., JI X., Average intensity of M × N Gaussian array beams in oceanic turbulence, Applied Optics 54(25), 2015, pp. 7500–7507, DOI: 10.1364/ AO.54.007500.
  • [32] TANG M., ZHAO D., Regions of spreading of Gaussian array beams propagating through oceanic turbulence, Applied Optics 54(11), 2015, pp. 3407–3411, DOI: 10.1364/AO.54.003407.
  • [33] LU L., ZHANG P., FAN C., QIAO C., Influence of oceanic turbulence on propagation of a radial Gaussian beam array, Optics Express 23(3), 2015, pp. 2827–2836, DOI: 10.1364/OE.23.002827.
  • [34] LIU D., WANG Y., Evolution properties of a radial phased-locked partially coherent Lorentz–Gauss array beam in oceanic turbulence, Optics and Laser Technology 103, 2018, pp. 33–41, DOI: 10.1016/j.optlastec.2018.01.014.
  • [35] YOUSEFI M., KASHANI F.D., MASHAL A., Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence, Laser Physics 27(2), 2017, article ID 026202, DOI: 10.1088/1555-6611/aa4f58.
  • [36] CAI Y., WANG F., Partially coherent anomalous hollow beam and its paraxial propagation, Physics Letters A 372(25), 2008, pp. 4654–4660, DOI: 10.1016/j.physleta.2008.05.005.
  • [37] JEFFREY H.D.A., Handbook of Mathematical Formulas and Integrals, Fourth Ed., Academic Press, 2008.
  • [38] CAI Y., Propagation of various flat-topped beams in a turbulent atmosphere, Journal of Optics A: Pure and Applied Optics 8(6), 2006, pp. 537–545, DOI: 10.1088/1464-4258/8/6/008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f97071b-6437-46bd-837f-8e7db89dfbff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.