PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of aortic valve diseases on pressure profiles in selected locations of the human arterial system

Identyfikatory
Warianty tytułu
PL
Wpływ chorób zastawki aortalnej na przebiegi ciśnienia w wybranych miejscach układu tętniczego człowieka
Języki publikacji
EN
Abstrakty
EN
Aortic valve diseases such as aortic stenosis and aortic regurgitation, are the most frequent valvular heart diseases. The lesions in the valves affect circulation in the whole arterial system. We study the effects with the use of a 1-D model in which an arterial segment transmits a single mode of pulse waves. The appropriate reflection coefficient and the form of the stroke pressure are devised to simulate the function of the healthy and morbid aortic valve. The time dependence of the arterial pressure is predicted at the most important locations of the arterial tree. A remarkable result is that little variations of the reflection coefficient of the vale due to the modelled diseases cause significant changes of the pressure profiles, especially at the ascending aorta, the left brachial artery and in the anterior communicating artery.
PL
Zwężenie zastawki aortalnej (stenosis ostii arteriosi sinistri) oraz niedomykalność zastawki aortalnej (insufficientia valvulae aortae) są najczęstszymi chorobami zastawek serca. Zmiany chorobowe zastawki niewątpliwie wpływają na obieg krwi w całym układzie tętniczym. Wpływ tych zmian zbadano przy użyciu jednowymiarowego modelu, w którym każdy segment tętnicy transmituje tylko jeden mod fali tętna. Opracowane odpowiednie wartości współczynnika odbicia zastawki aortalnej oraz kształt ciśnienia generowanego przy skurczu serca symulują realistycznie działanie zastawki zdrowej i chorej. Otrzymane wyniki pozwalają przewidywać przebiegi ciśnienia w najistotniejszych miejscach drzewa tętniczego. Zadziwiający jest fakt, że nawet najmniejsze różnice w współczynniku odbicia od zastawki powodują znaczące zmiany w profilach ciśnienia, a w szczególności w aorcie wstępującej, lewej tętnicy ramiennej oraz w tętnicy łączącej przedniej.
Rocznik
Strony
243--255
Opis fizyczny
Bibliogr. 37 poz., il., wz., wykr.
Twórcy
autor
  • The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences
autor
  • Department of Physics and Earth Sciences, University of Ferrara
autor
  • Department of Physics and Earth Sciences, University of Ferrara
  • Institute of Physics, Cracow University of Technology
Bibliografia
  • [1] Chambers J.B., Aortic stenosis, European Journal of Echocardiography, Vol. 10, 2009, 11–19.
  • [2] Baumgartner H., Hung J., Bermejo J., Chambers J.B., Evangelista A., Griffin B.P., Iung B., Otto C.M., Pellikka P.A., Quinones M., Echocardiographic assessment of valve stenosis: Eae/ase recommendations for clinical practice, European Journal of Echocardiography, Vol. 10, 2009, 1–25.
  • [3] Bermejo J., The effects of hypertension on aortic valve stenosis, Heart, Vol. 91, 2005, 280–282.
  • [4] Schade R., Andersohn F., Suissa S., Haverkamp W., Garbe E., Dopamine agonists and the risk of cardiac-valve regurgitation, N Engl J Med, Vol. 356, 2007, 29–38.
  • [5] Zanettini R., Antonini A., Gatto G., Gentile R., Tesei S., Pezzoli G., Valvular heart disease and the use of dopamine agonists for parkinson’s disease, N Engl J Med., Vol. 356, 2007, 39–46.
  • [6] Maurer G., Aortic regurgitation, Heart, Vol. 92, 2006, 994–1000.
  • [7] Pocock C., Chambers J., The patient with a systolic murmur: severe aortic stenosis may be missed during cardiovascular examination, QJM, Vol. 93, 2000, 685–688.
  • [8] Pasipoularides A., Clinical assessment of ventricular ejection dynamics with and without outflow obstruction, J Am Coll Cardiol, Vol. 15, 1990, 859–882.
  • [9] Wisenbaugh T., Spann J. F., Carabello B. A., Differences in myocardial performance and load between patients with similar amounts of chronic aortic versus chronic mitral regurgitation, J Am Coll Cardiol, Vol. 3, 1984, 916-923.
  • [10] Schwarz M., Nguyen M., Kiencke U., Heilmann C., Klemm R., Benk C., Beyersdorf F., Busch H., Integration of the circle of willis into avolio’s model of the arterial haemodynamics,Proceedings of the Sixth IASTED International Conference Biomedical Engineering, 2008.
  • [11] Zamir M., Coverdale N., Barron C., Sawicki C., Shoemaker J., Baroreflex variability and “resetting”: A new perspective, Journal of Biomechanics, Vol. 47, 2014, 237–244.
  • [12] Kember G., Armour J., Zamir M., Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia, Physiological Genomics, Vol. 45, 2013, 638–644.
  • [13] Ogoh S., Fadel P., Nissen P., Jans O., Selmer C., Secher N., Raven P., Baroreflex – mediated changes in cardiac output and vascular conductance in response to alterations in carotid sinus pressure during exercise in humans, J Physiol., Vol. 550, 2003, 317–324.
  • [14] Alastruey J., Parker K. H., Sherwin S. J., Arterial pulse wave haemodynamics, 11th International Conference on Pressure Surges, 2012, 401–443.
  • [15] Jagielska K., Trzupek D., Lepers M., Pelc A., Zieliński P., Effect of surrounding tissue on propagation of axisymmetric waves in arteries, Physical Review E, Vol. 76, 2007, 066304.
  • [16] Drochon A., Sinusoidal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field, The European Physical Journal Applied Physics, Vol. 73, 2016, 18.
  • [17] Sherwin S.J., Peiro J., Parker K.H., One-dimensional modelling of a vascular network in space-time variables, J. Eng. Maths., Vol. 47, 2003, 217–250.
  • [18] Peiro J., Veneziani A., Reduced models of the cardiovascular system, Cardiovascular Mathematics, 2009, 347–394.
  • [19] Hughes T., Lubliner J., On the one-dimensional theory of blood flow in the larger vessels, Mathematical Biosciences, Vol. 18(1–2), 1973, 161-170.–
  • [20] Smith N.P., Pullan A.J., Hunter P.J., An anatomically based model of transient coronary blood flow in the heart, SIAM J. Appl. Math., Vol. 62, 2001, 990–1018.
  • [21] Hughes T.J.R., A study of the one-dimensional theory of arterial pulse propagation, PhD thesis, 1974.
  • [22] Vosse F.N. van de, Stergiopulos N., Pulse wave propagation in the arterial tree, Annu. Rev. Fluid Mech., Vol. 43, 2011, 467–499.
  • [23] Canic S., Kim E., Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axi-symmetric vessels, Math. Meth. Appl. Sci., Vol. 26, 2003, 1161–1186.
  • [24] Quarteroni A., Formaggia L., Mathematical modelling and numerical simulation of the cardiovascular system, in Handbook of Numerical Analysis 12, Elsevier, 2004, 3–127.
  • [25] Womersley J.R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol. 127 (3), 1955, 553–563.
  • [26] Holzapfel G.A., Gasser T.C., Ogden R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, Vol. 61, 2000, 1–48.
  • [27] Armentano R., Barra J., Levenson J., Simon A., Pichel R.H., Arterial wall mechanics in conscious dogs: Assessment of viscous, inertial and elastic moduli to characterize aortic wall behavior, Circulation Research, Vol. 76, 1995, 468–478.
  • [28] Armentano R., Megnien J.L., Simon A., Bellenfant F., Barra J., Levenson J., Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans, Hypertension, Vol. 26, 1995, 48–54.
  • [29] Craiem D., Graf S., Pessana F., Grignola J., Bia D., Gines F., Armentano R., Cardiovascular engineering: modelization of ventricular arterial interaction in systemic and pulmonary circulation, Latin American Applied Research, Vol. 35, 2005, 111–114.
  • [30] Canic S., Tambaca J., Guidobon G., Mikelic A., Hartley C., Rosenstrauch D., Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow, SIAM J. Appl. Math., Vol. 67, 2006, 164–193.
  • [31] Saito M., Ikenaga Y., Matsukawa M., Watanabe Y., Asada T., Lagree P.-Y., Onedimensional model for propagation of a pressure wave in a model of the human arterial network: Comparison of theoretical and experimental results, J. Biomech. Eng., Vol. 133, 2011, 121005.
  • [32] Alastruey J., Khir A., Matthys K.S., Segers P., Sherwin S. J., Verdonck P., Parker K. H., Peiro J., Pulse wave propagation in a model human arterial network: Assessment of 1-d viscoelastic simulations against in vitro measurements, J. Biomech., Vol. 44, 2011, 2250–2258.
  • [33] Formaggia L., Lamponi D., Quarteroni A., One-dimensional models for blood flow in arteries, J. Eng. Math., Vol. 47, 2003, 251–276.
  • [34] Alastruey J., Parker K.H., Peiro J., Sherwin S.J., Lumped parameter outflow models for 1-d blood flow simulations: Effect on pulse waves and parameter estimation, Commun. Comput. Phys., Vol. 4, 2008, 317–336.
  • [35] Alastruey J., Parker K.H., Peiro J., Sherwin S.J., Analysing the pattern of pulse waves in arterial networks: a time-domain study, J. Eng. Math., Vol. 64, 2009, 331–351.
  • [36] Majka M., Gadda G., Taibi A., Gałązka M., Zieliński P., Protective properties of the arterial system against peripherally generated waves, Mathematical Biosciences, Vol.286, 2017, 16–21.
  • [37] Majka M., Gadda G., Taibi A., Gałązka M., Zieliński P., The earliest effects of sudden occlusions on pressure profiles in selected locations of the human systemic arterial system, Physical Review E – in press, 2017.
Uwagi
EN
Section "Physics"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f9471ef-1684-4b03-abbc-37aca28cfffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.