PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralogical factors affecting the separation behavior of Ta-Nbbearing minerals in the gravity field : mineral grain size, liberation, and association relationship

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gravity separation is the primary method used to beneficiate Ta-Nb-bearing minerals, however, it performs poorly in low-grade and fine-grained ores. A comparative study of gravity separation products (concentrate, middlings, and tailings) reveals the factors affecting the separation behavior of Ta-Nb-bearing minerals in the process combined with a spiral chute and shaking table from the perspective of mineralogy. The results reveal that columbite-tantalite is the principal Ta-Nb-bearing mineral. As the grinding time increases, the grade of Ta and Nb in concentrate increases significantly. The grain size of columbite-tantalite in the concentrate is the coarsest, followed by that in the middlings, and the finest in the tailings, which are mainly distributed in the range of -150+38 μm, -75+20 μm, and -38 μm, respectively. The liberation degree of columbite-tantalite in the concentrate and tailings is positively correlated with grinding time, while that in the middlings is negatively correlated with grinding time. The density of columbite-tantalite-bearing particles in concentrate is mainly distributed above 3 or even 4, due to the high liberation degree of the columbite-tantalite in the concentrate, as well as the high amount of rich intergrowth associated with heavy minerals. The density of Ta-Nb-bearing mineral particles in the middlings and tailings is predominantly distributed in D<3, owing to columbite-tantalite mainly associated with lighter gangue minerals such as quartz, albite, and orthoclase. It demonstrates that the liberation degree is not the most essential factor in determining columbite-tantalite separation behavior in the gravity field, and the mineralogical characteristics of columbite-tantalite including grain size, association relationship, and particle density, may be more important. The results of this investigation can provide theoretical support for the strengthening separation of low-grade tantalum-niobium ore.
Rocznik
Strony
art. no. 174504
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory for Polymetallic Ores’ Evaluation and Utilization, MNR, Zhengzhou, 450006, Henan, China
  • Northwest China Center for Geosience Innovation, Xi’an, 710054, Shanxi, China
autor
  • Sinosteel Maanshan General Institute of Mining Research Co., Ltd., Maanshan 243000, China
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory for Polymetallic Ores’ Evaluation and Utilization, MNR, Zhengzhou, 450006, Henan, China
  • Northwest China Center for Geosience Innovation, Xi’an, 710054, Shanxi, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory for Polymetallic Ores’ Evaluation and Utilization, MNR, Zhengzhou, 450006, Henan, China
  • Northwest China Center for Geosience Innovation, Xi’an, 710054, Shanxi, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory for Polymetallic Ores’ Evaluation and Utilization, MNR, Zhengzhou, 450006, Henan, China
  • Northwest China Center for Geosience Innovation, Xi’an, 710054, Shanxi, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory for Polymetallic Ores’ Evaluation and Utilization, MNR, Zhengzhou, 450006, Henan, China
  • Northwest China Center for Geosience Innovation, Xi’an, 710054, Shanxi, China
autor
  • Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, Henan, China
  • Key Laboratory for Polymetallic Ores’ Evaluation and Utilization, MNR, Zhengzhou, 450006, Henan, China
  • Northwest China Center for Geosience Innovation, Xi’an, 710054, Shanxi, China
Bibliografia
  • BALE, M.D., MAY, A.V., 1989. Processing of ores to produce tantalum and lithium. Minerals Engineering. 2(3), 299-320.
  • BULATOVIC, S.M., 2010. Flotation of Tantalum/Niobium Ores. Handbook of Flotation Reagents: Chemistry, Theory and Practice, 127-149.
  • CAO, M., BU, H., GAO, Y., 2020. A mixed collector system for columbite-tantalite flotation. Minerals Engineering. 161(3–4), 106715.
  • EL-MIDANY, A.A., SELIM, A.Q., IBRAHIM, S.S., 2011. Effect of celestite-calcite mineralogy on their separation by attrition scrubbing. Particulate Science and Technology. 29(3), 272-284.
  • ENGSTRÖM, F., 2010. Mineralogical influence on leaching behaviour of steelmaking slags: a laboratory investigation. Luleĺ tekniska universitet.
  • GHORBANI, Y., FITZPATRICK, R., KINCHINGTON, M., ROLLINSON, G., HEGARTY, P., 2017. A process mineralogy approach to gravity concentration of Tantalum bearing minerals. Minerals. 7(10), 194.
  • GULLEY, A.L., NASSAR, N.T., XUN, S., 2018. China, the United States, and competition for resources that enable emerging technologies. Proceedings of the National Academy of Sciences of the United States of America. 115(16), 4111-4115.
  • HABINSHUTI, J.B., MUNGANYINKA, J.P., ADETUNJI, A.R., MISHRA, B., OFORI-SARPONG, G., KOMADJA, G.C., TANVAR, H., MUKIZA, J., ONWUALU, A.P., 2021. Mineralogical and physical studies of low-grade tantalum-tin ores from selected areas of Rwanda. Results in Engineering. 11, 100248.
  • HUANG, M., HU, K., LI, X., WANG, Y., OUYANG, J., ZHOU, L., LIU, Z., 2022. Mineralogical Properties of a Refractory Tantalum-Niobium Slag and the Effect of Roasting on the Leaching of Uranium-Thorium. Toxics. 10(8), 469.
  • LI, S., LIU, J., HAN, Y., ZHANG, S., 2023. Review on the Beneficiation of Li, Be, Ta, Nb-Bearing Polymetallic Pegmatite Ores in China. Minerals. 13(7), 865.
  • Linnen, R., Trueman, D.L., Burt, R., 2014. Tantalum and niobium. Critical metals handbook, 361-384.
  • LV, Z.-H., WEI, M., WU, D.-Y., ZHAO, D.-K., 2010. Investigation Actuality on Mineral Processing Technology of Tantalum-niobium ores. Conservation and Utilization of Mineral Resources(5), 4.
  • LV, Z., CHENG, H., WEI, M., ZHAO, D., WU, D., LIU, C., 2022. Mineralogical Characteristic and Beneficiation Evaluation of a Ta-Nb-Li-Rb Deposit. Minerals. 12(4), 457.
  • LV, Z., WEI, M., WU, D., LIU, C., ZHAO, D., FENG, A., 2012. A new technology for processing niobite ore found in Jiangxi province. International Journal of Mining Science and Technology. 22(4), 579-583.
  • MARION, C., GRAMMATIKOPOULOS, T., RUDINSKY, S., LANGLOIS, R., WILLIAMS, H., CHU, P., AWAIS, M., GAUVIN, R., ROWSON, N., WATERS, K., 2018. A mineralogical investigation into the preconcentration of the Nechalacho deposit by gravity separation. Minerals engineering. 121, 1-13.
  • MATHIEUX, F., ARDENTE, F., BOBBA, S., NUSS, P., BLENGINI, G., ALVES DIAS, P., BLAGOEVA, D., MATOS, C., WITTMER, D., PAVEL, C., HAMOR, T., SAVEYN, H., GAWLIK, B., ORVEILLON, G., HUYGENS, D., GARBARINO, E., TZIMAS, E., BOURAOUI, F., ŠOLAR, S., SOLAR, F., Critical raw materials and the circular economy. 2017.
  • MEIRONE, L., QINGBO, M., DONGYUN, L., BO, L., YING, J., 2021. Study on Mineralogical Characteristics and Occurrence of Tantalum and Niobium in a Tantalum-Niobium Ore in Jiangxi. Nonferrous Metals (Mineral Processing Section)(6).
  • NHETA, W., RUWIZHI, B., An Investigation on Flotation Process of Low-Grade Niobium/Tantalum Ore. 2019.
  • NZEH, N.S., ADEOSUN, S., POPOOLA, A.P., ADELEKE, A., OKANIGBE, D., 2022a. Process applications and challenges in mineral beneficiation and recovery of niobium from ore deposits–A review. Mineral Processing and Extractive Metallurgy Review. 43(7), 833-864.
  • NZEH, N.S., POPOOLA, A., ADELEKE, A., ADEOSUN, S., 2022b. Factors and challenges in the recovery of niobium and tantalum from mineral deposits, recommendations for future development–A review. Materials Today: Proceedings. 65, 2184-2191.
  • RAJAK, D.K., JORDAAN, R., GÓMEZ-ARIAS, A., PURCELL, W., 2022. Extractive metallurgy of columbitetantalite ore: A detailed review. Minerals Engineering. 190, 107917.
  • SCHULZ, K.J., DEYOUNG JR, J.H., SEAL II, R.R., BRADLEY, D.C., 2017a. Critical mineral resources of the United States—An introduction, In Professional Paper, eds. Schulz, K.J., DeYoung, J.J.H., Seal Ii, R.R., Bradley, D.C., Reston, VA, p. 22.
  • SCHULZ, K.J., PIATAK, N.M., PAPP, J.F., 2017b. Niobium and tantalum, In Professional Paper, eds. Schulz, K.J., DeYoung, J.J.H., Seal Ii, R.R., Bradley, D.C., Reston, VA, p. 46.
  • YUAN, Z.-T., LU, J.-W., WU, H.-F., LIU, J.-T., 2015. Mineralogical characterization and comprehensive utilization of micro-fine tantalum–niobium ores from Songzi. Rare Metals. 34(4), 282-290.
  • ZHAI, M.-G., WU, F.-Y., HU, R.-Z., JIANG, S.-Y., 2019. Critical metal mineral resources: current research status and scientific issues. Bulletin of National Natural Science Foundation of China. 33(2), 6.
  • ZHOU, H., LIU, G., ZHANG, L., ZHOU, C., 2021. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. Journal of Hazardous Materials. 401, 123293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f92afad-e996-4282-92c3-0c60768a1f29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.