PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Grit Blasting and Thermal Spraying on Microstructure Evolution of P91 Weldment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, studies have been carried out on the variations in the microstructure and hardness of P91 base-metal and welded joint. This variations result from the grit blasting and thermal cycle experienced during the thermal spraying process. The microstructural effects have been analyzed in terms of the depth of the deformation zone. Scanning Electron Microscopy and Xray diffraction were used as characterization techniques. The grit blasting carried out prior to thermal spraying has resulted in the highest change in sub-surface hardness of the heat affected zone (HAZ). However, flame treatment further reduced the subsurface hardness of the heat affected zone. The depth of deformation zone was highest for inter-critical heat affected zone (IC-HAZ). The overall coating process resulted in an increase in subsurface hardness of various regions of HAZ and fusion zone (FZ). The base metal showed a 7% increase in subsurface hardness due to the overall coating process. The IC-HAZ showed maximum variation with 36% increase in subsurface hardness. The coarse grained heat affected zone (CG-HAZ) and FZ did not show any change in subsurface hardness. As a whole, the hardness and microstructure of the welded joint was observed to be more sensitive to the thermal spray coating process as compared to the base metal.
Słowa kluczowe
EN
Twórcy
  • Indian Institute of Technology, Mechanical and Industrial Engineering Department, Roorkee, Uttarakhand 247667, India
autor
  • Department of Mechanical Engineering, SRM IST Delhi NCR Campus Modinagar Uttar Pradesh 201204, India
autor
  • Indian Institute of Technology, Mechanical and Industrial Engineering Department, Roorkee, Uttarakhand 247667, India
  • Indian Institute of Technology Bhubaneswar, School of Mechanical Science, Odisha 751013, India
autor
  • National Institute of Technology, Raipur, Chhattisgarh 492010
Bibliografia
  • [1] R. Viswanathan, J. Sarver, J. M. Tanzosh, J. Mater. Eng. Perform. 15, 255-274 (2006). doi:10.1361/105994906X108756.
  • [2] C. Pandey, M. M. Mahapatra, P. Kumar, R. S. Vidyrathy, A. Srivastava, Mater. Sci. Eng. A 695, 291-301 (2017). doi:10.1016/j.msea.2017.04.037.
  • [3] C. Pandey, M. M. Mahapatra, J. Mater. Eng. Perform. 25, 2195-2210 (2016). doi:10.1007/s11665-016-2064-x.
  • [4] C. D. Lundin, Mater. Des. 12 (4), 193-197 (1991).
  • [5] S. S. Wang, D. L. Peng, L. Chang, X. D. Hui, Mater. Des. 50, 174-180 (2013). doi:10.1016/j.matdes.2013.01.072.
  • [6] N. Saini, C. Pandey, M. M. Mahapatra, H. K. Narang, R. S. Mulik, P. Kumar, Eng. Fail. Anal. 81, 245-253 (2017). doi:10.1016/j.engfailanal.2017.06.044.
  • [7] ASTM-A335/A335M-18a, ASTM-International, (2018). https://doi.org/10.1520/A0335_A0335M-18A
  • [8] M. Gwoździk, Z. Nitkiewicz, Arch. Metall. Mater. 58, 4-31 (2013). doi:10.2478/v10172-012-0146-9.
  • [9] G. Golański, J. Kępa, Arch. Metall. Mater. 57, 575-582 (2012). doi:10.2478/v10172-012-0061-0.
  • [10] A. Zieliński, J. Dobrzański, H. Purzyńska, G. Golański, Arch. Metall. Mater. 61, 957-964 (2016). doi:10.1515/amm-2016-0163.
  • [11] G. Golański, J. Jasak, A. Zieliński, C. Kolan, M. Urzynicok, P. Wieczorek, Arch. Metall. Mater. 62, 263-271 (2017). doi:10.1515/amm-2017-0040.
  • [12] I. Velkavrh, F. Kafexhiu, S. Klien, F. Ausserer, J. Voyer, A. Diem, J. Phys. Conf. Ser. 843, 012065 (2017). doi:10.1088/1742-6596/843/1/012065.
  • [13] W. Yan, W. Wang, Y. Y. Shan, K. Yang, Front. Mater. Sci. 7 (1), 1-27 (2013). doi:10.1007/s11706-013-0189-5.
  • [14] C. Pandey, A. Giri, M. M. Mahapatra, Mater. Sci. Eng. A 664, 58-74 (2016). doi:10.1016/j.msea.2016.03.132.
  • [15] M. Seraffon, A. T. Fry, D. M. Laing, Material for Advaced Power Engginering Conf. Ser. Forschungszentrum Julich, Germany (2014).
  • [16] N. Priyantha, P. Jayaweera, A. Sanjurjo, K. Lau, F. Lu, K. Krist. Surf. Coatings. Technol. 164, 6-31 (2003).
  • [17] B. S. Sidhu, S. Prakash, Surf. Coatings. Technol. 166, 89-100 (2003).
  • [18] S. Kamal, R. Jayaganthan, S. Prakash, S. Kumar, J. Alloys Compd. 463, 358-372 (2008). doi:10.1016/j.jallcom.2007.09.019.
  • [19] S. Kamal, R. Jayaganthan, S. Prakash, Surf. Coatings. Technol. 203, 1004-1013 (2009). doi:10.1016/j.surfcoat.2008.09.031.
  • [20] M. Suarez, S. Bellayer, M. Traisnel, W. Gonzalez, D. Chicot, J. Lesage, Surf. Coatings. Technol. 202, 4566-4571 (2008). doi: 10.1016/j.surfcoat.2008.04.043.
  • [21] J. Pirso, M. Viljus, S. Letunovitš, Wear, 260, 815-824 (2006). doi:10.1016/j.wear.2005.04.006.
  • [22] J. F. Li, C. X. Ding, Wear 240, 5-180 (2000). doi:10.1016/S0043-1648(00)00355-0.
  • [23] H. S. Sidhu, B. S. Sidhu, S. Prakash, Tribol. Int. 43, 887-890. (2010). doi:10.1016/j.triboint.2009.12.016.
  • [24] B. Q. Wang, Z. R. Shui, Wear 253, 550-557 (2002). doi:10.1016/S0043-1648(02)00049-2.
  • [25] J. G. Thakare, C. Pandey, R. S. Mulik, M. M. Mahapatra. Ceram. Int. 44, 6980-6989 (2018). doi:10.1016/j.ceramint.2018.01.131.
  • [26] J. G. Thakare, R. S. Mulik, M. M. Mahapatra. Ceram. Int. 44, 438-451 (2018). doi:10.1016/j.ceramics int.2017.09.196.
  • [27] J. R. Davis, Handbook of Thermal Spray Technology, ASM International (2004).
  • [28] L. Singh, V. Chawla, J. S. Grewal, J. Miner. Mater. Charact. Eng. 11, 243-265 (2012).
  • [29] K. C. Poorna, M. Vashista, K. Sabiruddin, S. Paul, P. P. Bandyopadhyay, Mater. Des. 30, 2895-2902 (2009). doi:10.1016/j.matdes.2009.01.014.
  • [30] A. W. Momber, Y. C. Wong, JCT Res. 61002E, 2:453 (2005)
  • [31] C. Pandey, M. M. Mahapatra, J. Mater. Eng. Perform. 25, 2761-2775 (2016). doi:10.1007/s11665-016-2127-z.
  • [32] A. K. Singh, M. Kumar, V. Dey, R. N. Rai, IOP conf. Ser. Mater. Sci. Eng. 225, 012099 (2017).
  • [33] C. Pandey, A. Giri, M. M. Mahapatra, Materials Science & Engineering A 657, 173-84 (2016). doi:10.1016/j.msea.2016.01.066.
  • [34] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, Trans. Indian. Inst. Met. 4, 1-20 (2017). doi:10.1007/s12666-017-1144-4.
  • [35] C. Pandey, M. M. Mahapatra, P. Kumar, A. Giri. Met. Mater. Int. 23, 900-14 (2017). doi:10.1007/s12540-017-6850-2.
  • [36] C. Pandey, N. Saini, M. M. Mahapatra, P. Kumar, Int. J. Hydrogen Energy 41, 17695-17712 (2016). doi:10.1016/j.ijhydene.2016.07.202.
  • [37] C. G. Panait, W. Bendick, A. Fuchsmann, A. F. G. Lorenzon, J. Besson, Int. J. Press Vessel. Pip. 87, 326-35 (2010). doi:10.1016/j.ijpvp.2010.03.017.
  • [38] P. Parameswaran, S. Saroja, M. Vijayalakshmi, J. Nucl. Mater. 232, 226-232 (1996).
  • [39] X. S. Guan, Z. F. Dong, D. Y. Li, Nanotechnology 16, 2963-2971 (2005). doi:10.1088/0957-4484/16/12/040.
  • [40] C. Pandey, M. M. Mahapatra, Trans Indian Inst Met 69, 1657-1673 (2016). doi:10.1007/s12666-015-0826-z.
  • [41] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, Mater. Sci. Eng. A 712, 720-37 (2018). doi:10.1016/j.msea.2017.12.039.
  • [42] S. Sulaiman, Structure of properties of the heat affected zone of P91 creep resistant steel, PhD thesis, University of Wollongong, New South Wales, Australia, 2007.
  • [43] K. Toshal, J. Lu, B. Guelorget, E. Nagashima, ICSP9 400-405 (2001).
  • [44] C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, J. G. Thakre, R. S. Vidyarthy, Arch. Civ. Mech. Eng. 18, 713-22 (2018). doi: http://dx.doi.org/10.1016.
  • [45] P. Valášek, M. Müller, Manuf. Technol. 16, 1371-1380 (2016).
  • [46] N. Gutiérrez, J. Alvarado, H. Cicco, A. Danón. Procedia Mat. Sci. 8, 1140-1149 (2015). doi:10.1016/j.mspro.2015.04.178.
  • [47] A. Moitra, P. Parameswaran, P. R. Sreenivasan, S. L. Mannan. Mater. Charact. 48, 55-61 (2002). doi: 10.1016/S1044-5803(02)00247-4
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f8bf938-8733-4c1d-85a2-cd2dceabaf0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.