PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An extension of line spring model for vibration analysis of thin isotropic plate containing multiple part-through cracks: an analytical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the effect of multiple part-through cracks on the vibration characteristics of thin isotropic rectangular plate is presented. The proposed analytical model is developed using Kirchhoff’s classical plate theory and the crack terms are formulated using the simplified Line Spring Model (LSM). The application of Berger's formulation helps to transform the derived governing equation in the form of well known Duffing equation with cubic nonlinearities and then the solution for final governing equation is obtained using Galerkin's method for two different boundary conditions. The fundamental frequency of the plate as affected by the number of cracks, cracks length, cracks orientation, and plate aspect ratio for different boundary condition is presented. It is found that the results obtained for natural frequencies are maximally affected by number of cracks, crack length and orientations.
Rocznik
Tom
Strony
art. no. 2018022
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, National Institute of Technology, Raipur, (C.G.) INDIA 492010
autor
  • Department of Mechanical Engineering, National Institute of Technology, Raipur, (C.G.) INDIA 492010
autor
  • Department of Mechanical Engineering, National Institute of Technology, Raipur, (C.G.) INDIA 492010
autor
  • Department of Mechanical Engineering, National Institute of Technology, Raipur, (C.G.) INDIA 492010
autor
  • Department of Mechanical Engineering, National Institute of Technology, Raipur, (C.G.) INDIA 492010
autor
  • Department of Mechanical Engineering, National Institute of Technology, Raipur, (C.G.) INDIA 492010
autor
  • Department of Mechanical Engineering, Shri Shankaracharya Technical Campus, SSGI, Bhilai, (C.G.) INDIA 490001
Bibliografia
  • 1. A. W. Leissa, Vibration of plates, 1969, DOI:10.1002/zamm.19710510331.
  • 2. A. W. Leissa, The Free Vibration Ofrectangular Plates, J. Sound Vib., 31 (1973) 257 - 293, DOI: 10.1016/S0022-460X(73)80371-2.
  • 3. R. Szilard, Theories and Applications of Plate Analysis, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004, DOI: 10.1002/9780470172872.
  • 4. E. Ventsel, T. Krauthammer, Thin Plates and Shells, CRC Press, 2001, DOI: 10.1201/9780203908723.
  • 5. G. B. Warburton, The vibration of rectangular plates, Arch. Proc. Inst. Mech. Eng. 1847-1982 (Vols 1-196). 168 (1954) 371 - 384, DOI: 10.1243/PIME_PROC_1954_168_040_02.
  • 6. D. J. Dawe, L. Roufaeil, rayleigh-ritz vibration plates analysis of mindlinii, 69 (1980) 345 - 359.
  • 7. S. Kitipornchai, Y. Xiang, C. M. Wang, K. M. Liew, Buckling of thick skew plates, Int. J. Numer. Methods Eng., 36 (1993) 1299 - 1310, DOI: 10.1002/nme.1620360804.
  • 8. Ł. Domagalski, An Analytical-Numerical Approach to Analysis of Large Amplitude Vibrations of Slender Periodic Beams, Vibrations in Physical Systems, 27 (2016) 99 - 106.
  • 9. C. S. Huang, A. W. Leissa, C. W. Chan, Vibrations of rectangular plates with internal cracks or slits, Int. J. Mech. Sci., 53 (2011) 436 - 445, DOI: 10.1016/j.ijmecsci.2011.03.006.
  • 10. J. Jędrysiak, E. Pazera, Free Vibrations of Thin Microstructured Plates, Vibrations in Physical Systems, 26 (2014) 93 - 98.
  • 11. S. E. Khadem, M. Rezaee, Introduction of modified comparison functions for vibration analysis of a rectangular cracked plate, J. Sound Vib., 236 (2000) 245 - 258, DOI: 10.1006/jsvi.2000.2986.
  • 12. M. Krawczuk, A. Żak, W. Ostachowicz, Finite element model of plate with elasto-plastic through crack, Comput. Struct., 79 (2001) 519 - 532, DOI: 10.1016/S0045-7949(00)00156-5.
  • 13. B. Stahl, L. M. Keer, Vibration and stability of cracked rectangular plates, Int. J. Solids Struct., 8 (1972) 69 - 91, DOI: 10.1016/0020-7683(72)90052-2.
  • 14. K. M. Liew, K. C. Hung, M. K. Lim, A solution method for analysis of cracked plates under vibration, Eng. Fract. Mech., 48 (1994) 393 - 404, DOI: 10.1016/0013-7944(94)90130-9.
  • 15. G. Y. Wu, Y. S. Shih, Dynamic instability of rectangular plate with an edge crack, Comput. Struct., 84 (2005) 1 - 10, DOI: 10.1016/j.compstruc.2005.09.003.
  • 16. Y. G. Xiao, Y. M. Fu, X. D. Zha, Bifurcation and chaos of rectangular moderately thick cracked plates on an elastic foundation subjected to periodic load, Chaos, Solitons & Fractals, 35 (2008) 460 - 465, DOI: 10.1016/j.chaos.2006.04.074.
  • 17. J. R. Rice, N. Levy, The Part-Through Surface Crack in an Elastic Plate, J. Appl. Mech., 39 (1972) 185, DOI: 10.1115/1.3422609.
  • 18. R. B. King, Elastic-plastic analysis of surface flaws using a simplified line-spring model, Eng. Fract. Mech., 18 (1983) 217 - 231, DOI: 10.1016/0013-7944(83)90108-X.
  • 19. K. Maruyama, O. Ichinomiya, Experimental Study of Free Vibration of Clamped Rectangular Plates with Straight Narrow Slits, JSME Int. Journal. Ser. 3, Vib. Control Eng. Eng. Ind., 32 (1989) 187 - 193.
  • 20. C. S. Huang, A. W. Leissa, Vibration analysis of rectangular plates with side cracks via the Ritz method, J. Sound Vib., 323 (2009) 974 - 988, DOI: 10.1016/j.jsv.2009.01.018.
  • 21. C. S. Huang, A. W. Leissa, R. S. Li, Accurate vibration analysis of thick, cracked rectangular plates, J. Sound Vib., 330 (2011) 2079 - 2093, DOI: 10.1016/j.jsv.2010.11.007.
  • 22. A. Israr, M. P. Cartmell, E. Manoach, I. Trendafilova, W. Ostachowicz, M. Krawczuk, et al., Analytical Modeling and Vibration Analysis of Partially Cracked Rectangular Plates With Different Boundary Conditions and Loading, J. Appl. Mech., 76 (2009) 11005, DOI: 10.1115/1.2998755.
  • 23. R. Ismail, M. P.Cartmell, An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation, J. Sound Vib., 331 (2012) 2929 - 2948, DOI: 10.1016/j.jsv.2012.02.011.
  • 24. P. V Joshi, N. K. Jain, G. D. Ramtekkar, Analytical modeling and vibration analysis of internally cracked rectangular plates, J. Sound Vib., 333 (2014) 5851 - 5864, DOI: 10.1016/j.jsv.2014.06.028.
  • 25. P. V Joshi, N. K. Jain, G. D. Ramtekkar, Analytical modelling for vibration analysis of partially cracked orthotropic rectangular plates, Eur. J. Mech. A/Solids, 50 (2015) 100 - 111, DOI:10.1016/j.euromechsol.2014.11.007.
  • 26. P. V Joshi, N. K. Jain, G. D. Ramtekkar, Effect of thermal environment on free vibration of cracked rectangular plate: An analytical approach, Thin-Walled Struct., 91 (2015) 38 - 49, DOI: 10.1016/j.tws.2015.02.004.
  • 27. A. Gupta, N. K. Jain, R. Salhotra, P. V. Joshi, Effect of microstructure on vibration characteristics of partially cracked rectangular plates based on a modified couple stress theory, Int. J. Mech. Sci., 100 (2015) 269 - 282, DOI: 10.1016/j.ijmecsci.2015.07.004.
  • 28. A. Gupta, N. K. Jain, R. Salhotra, A. M. Rawani, P. V. Joshi, Effect of fibre orientation on non-linear vibration of partially cracked thin rectangular orthotropic micro plate: An analytical approach, Int. J. Mech. Sci., 105 (2016) 378 - 397, DOI: 10.1016/j.ijmecsci.2015.11.020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f8975a1-388c-4182-bb58-9e79c0a2b8a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.