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Abstract   

In the present study, the effect of multiple part-through cracks on the vibration characteristics of thin isotropic 
rectangular plate is presented. The proposed analytical model is developed using Kirchhoff’s classical plate 

theory and the crack terms are formulated using the simplified Line Spring Model (LSM). The application of 

Berger's formulation helps to transform the derived governing equation in the form of well known Duffing 
equation with cubic nonlinearities and then the solution for final governing equation is obtained using Galerkin's 

method for two different boundary conditions. The fundamental frequency of the plate as affected by the number 

of cracks, cracks length, cracks orientation, and plate aspect ratio for different boundary condition is presented. 
It is found that the results obtained for natural frequencies are maximally affected by number of cracks, crack 

length and orientations. 
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1. Introduction 

Thin plates are widely used as structural components and find many broad applications in 

all fields of engineering such as mechanical, civil, aerospace, aviation and ship building 

industries. The presence of singularities in the form of cracks and holes is a quite common 

situation which adversely affects the vibration characteristics of such plate structures. 

Thus, the analysis for vibration characteristics of the structural members is very important 

for developing techniques to detect damages. An exhaustive literature review on vibration 

of plates has been given by Leissa [1] in his monograph and later the author presented a 

review on vibration of rectangular plates [2]. A variety of literatures are available 

onvibrations of plates due to its simplicity of solution. ‘Theories and Applications of Plate 

Analysis’ [3] and ‘Thin Plates and Shells’ [4] are the references covering statics and 

dynamics of plates. According to Szilard [3], the solution techniques are largely dependent 

on the edge conditions and shape of plates. Warburton [5] applied the Rayleigh's method 

and calculated natural frequencies and mode shapes of rectangular plates. The work of 

Dawe and Roufaeil [6] shows the application of the Rayleigh-Ritz method based on 

Mindlin plate theory to approximate the natural frequencies of lateral vibration of isotropic 

plates including the effects of shear deformation and rotary inertia. Kitipornchai et al. [7] 

applied the Rayleigh-Ritz method to study free vibrations of thick rectangular plates. Their 

approach was based on the Mindlin theory and they obtained Eigen value equations by 

minimizing the energy function. Domagalski [8] presented the analysis for nonlinear 

vibrations of beams with periodically varying material properties. They determined the 

linear natural frequencies and mode shapes for the vibrating beams. Huang et al. [9] 

applied the famous Ritz method to analyze the free vibrations of rectangular plates with 

internal cracks or slits and proposed a new set of admissible functions to retain the 

important and useful feature of the Ritz method providing the upper bounds on exact 

natural frequencies. Jędrysiak and Pazera [10] studied the free vibration problem of thin 

microstructured plates made of functionally graded material.Khadem and Rezaee [11] 

introduced a new functions named “modified comparison functions” and used for 

vibration analysis of a simply supported rectangular cracked plate assuming that the crack 

having an arbitrary length, depth and location is parallel to one side of the plate. Krawczuk 

et al. [12] developed a rectangular plate finite element with a through crack based on 

elasto-plastic fracture mechanics and the finite element method by considering that the 

crack is non-propagating and open. Stahl and Keer [13] presented Eigen value problems 

of cracked rectangular plates pertaining to vibration and buckling. They formulated the 

problem as dual series equations and reduced to homogeneous Fredholm integral 

equations of the second kind and compared numerical results for the natural frequencies 

and moment distributions with the work of other investigators. Liew et al. [14] reported 

an investigation on the vibrational behavior of cracked rectangular plates and carried out 

vibration analysis for plates with a crack (i) emanating from an edge or (ii) centrally 

located. They generated a governing Eigen value equation by complete coupling process 

and solved to obtain the vibration frequencies and compared these results, where possible 

with the work of other investigators Wu and Shih [15] studied the dynamic instability and 

nonlinear vibrations of simply supported plates containing edge cracks using von Karman 

theory. Their work shows the application of Galerkin’s method and the harmonic balance 
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method to obtain solution of the nonlinear model. They concluded that the increase in 

relative crack length decreases the natural frequency; also the vibration response is 

dependent on location of crack, plate aspect ratio and in-plane loading conditions. Xiao et 

al. [16] employed the Galerkin's method and the harmonic balance method to solve 

nonlinear equations of vibration. Their work shows the formulation of nonlinear equations 

based on Hamilton principle and Reissner theory for moderately thick cracked rectangular 

plate. The Line Spring Model (LSM) was proposed by Rice and Levy [17] for calculating 

the stress intensity at the crack tip of the plate. They represented the part through line crack 

as a continuously distributed spring with stretching and bending compliances. The three 

dimensional surface crack problem was reduced to two dimensional problem in which the 

constraining effects of the net ligament were incorporated in terms of moment and in-

plane load on the crack surface. King [18] presented a simplified line-spring model along 

with detailed illustration of its application and accomplished the simplification by 

replacing the crack front with a crack of constant depth. Maruyama and Ichinomiya [19] 

used holographic interferometry and performed experiments on clamped rectangular 

plates to study the effect of slit length, location and inclination on natural frequencies and 

mode shapes of vibration. Huang and Leissa [20] introduced special displacement function 

in the Ritz method for free vibration analysis of rectangular plates with inclined side 

cracks. They investigated the effect of crack location and crack length on natural 

frequencies of vibrating plates based on the classical plate theory. Later, Huang et al. [21] 

presented a set of special functions for the vibration analysis of thick rectangular plate 

using Mindlin theory based Ritz formulation. Israr et al. [22] employed the LSM to obtain 

relations between nominal tensile and bending stresses at the crack location and at the far 

sides of the plate. They developed an analytical model for vibration analysis of cracked 

rectangular plate based on the classical plate theory. They employed Berger formulation 

for in-plane forces which rendered the non-linear analytical model. It can be concluded 

from their work that the natural frequencies go on decreasing as the crack length increases. 

Extending the work of Israr et al. [22], Ismail and Cartmell [23] developed an analytical 

model for vibration analysis of a cracked isotropic rectangular plate considering various 

angular orientation of a crack for three different boundary conditions i.e. all edges are 

simply supported (SSSS), two adjacent edges are simply supported and other two adjacent 

edges are clamped (CCSS) and third boundary condition, two edges are clamped and two 

other adjacent edges are free (CCFF). They extended the Berger formulation and included 

the effect of crack inclination into it by considering in-plane shear. The authors established 

relations for moment and in-plane force due to orientation of the crack and validated their 

findings with experimentation. They concluded that the vibration frequencies are 

dependent on the orientation of crack located at the centre of the plate. Recently, Joshi et 

al. [24] developed the analytical model for vibration analysis of isotropic plate containing 

two perpendicular partial cracks parallel to either edges of the plate considering the 

different location of partial cracks along the thickness of the plates. Further extending their 

research Joshi et al. [25, 26] presented results for vibration analysis of cracked orthotropic 

plate [25] and effect of thermal environment on vibration characteristics of cracked 

isotropic plate [26]. Gupta et al. [27] used the LSM and developed an analytical model for 

vibration analysis of cracked isotropic and FGM micro plate. They used classical plate 

theory in conjunction with modified couple stress theory and concluded that results for 
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fundamental frequencies in case of micro plate are always higher for modified couple 

stress theory when compared to classical one. Further, they showed the effect of fibre 

orientation on vibration characteristics of cracked orthotropic micro-plate [28]. 

Review of literature shows the conventional and finite element formulations have been 

employed to study the linear and non-linear vibration characteristics of cracked plates. The 

development of analytical model for nonlinear vibrations of isotropic rectangular plate 

containing partial cracks and crack with various angular orientations have been studied by 

many researchers (Ref [22-24]). However, the literature lacks in analytical modelling for 

vibration analysis of isotropic plate containing multiple cracks of arbitrary orientation. 

Therefore, the present work addresses the effects of multiple cracks and their arbitrary 

orientation on vibration characteristics of the cracked plate by proposing a new analytical 

model. 

The present work on multiple cracks references the analytical model developed by 

Israr et al. [22] for an isotropic plate containing a single crack which is extended by Joshi 

et al. [24] for two perpendicular cracks and Ismail et al. [23] for a variably oriented single 

crack. Further extending the recently developing field of vibration analysis of cracked 

plates, a new analytical model is proposed for a rectangular plate containing centrally 

located multiple concurrent cracks with different crack orientation. Equilibrium principle 

based on the Kirchhoff’s Classical Plate Theory is used for deriving the equation of motion 

of the plate. The crack(s) considered in the present formulation are in the form of 

continuous line and the effect of rotary inertia is neglected.  The crack terms are formulated 

by appropriate compliance coefficients and the relationship between nominal tensile and 

bending stress at the far sides of the plate and at the crack location is established using 

simplified Line Spring Model. The analytical model is developed by incorporating the 

additional twisting moment and in-plane forces due to presence of cracks. The in-plane 

deflections in x and y directions are assumed to be restricted by boundary conditions. 

Galerkin’s method is employed to convert the equation of motion into Duffing equation 

from which the natural frequencies are evaluated for the cracked plate. The plate under 

consideration is shown in Fig. 1. Dimensions of the plate along x, y and z direction are L1, 

L2 and h respectively. ‘e’ is the depth of crack along the thickness of the plate. 2a, 2b, 2c 

and 2d are the crack lengths of the crack ‘A’, crack ‘B’, crack ‘C’ and crack ‘D’ 

respectively. Out of the four cracks, crack ‘A’ and crack ‘B’ are mutually perpendicular 

to each other and parallel to either edges of the plate whereas, crack ‘C’ and crack ‘D’ are 

at arbitrary orientation. The depth of the crack ‘e’ is assumed to be constant. Two boundary 

conditions, all edges simply supported (SSSS) and two edges clamped while two simply 

supported (CCSS) are considered for presenting the results. Results can also be obtained 

for other boundary conditions as well. 
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Figure 1. Isotropic plate containing multiple cracks 

2. Governing equation 

The governing equation of an intact rectangular plate based on the Classical plate theory 

considering the in-plane forces is rigorously treated in literature [3, 4]. 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+  2 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 
𝜕4𝑤

𝜕𝑦4
) =  −𝜌ℎ

𝜕2𝑤

𝜕𝑡2
 + 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+  𝑁𝑦

𝜕2𝑤

𝜕𝑦2
  

+2𝑁𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑧 

(1) 

Where 𝑃𝑧 is the lateral load per unit area, 𝑤 is the transverse deflection in z direction, 𝜌 is 

the density, h is the thickness of the plate and 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦= 𝑁𝑦𝑥 are the in-plane forces per 

unit length. D is flexural rigidity defined by 𝐷 =  
𝐸ℎ3

12(1−𝜈2)
 , where E is the modulus of 

elasticity of isotropic material, and v is the Poisson's ratio. By using the force and moment 

equilibrium equations, the governing equation of motion of a rectangular plate with two 

mutually perpendicular cracks parallel to either edges of the plate and two variably 

oriented part-through cracks located at the centre of the plate is given by (Detailed 

derivation is given in Appendix A): 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+  2 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 
𝜕4𝑤

𝜕𝑦4
) = −𝜌ℎ

𝜕2𝑤

𝜕𝑡2
+
𝜕2𝑀𝑦

𝜕𝑦2
+
𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
 

+𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑧 

(2) 

Where 𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 are bending moments per unit length and 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 are the 

membrane forces per unit length due to the presence of cracks. 

2.1. Crack terms 

The formulation of crack terms for the plate containing multiple part-through cracks is 

carried out using the application of Line Spring Model (LSM). Israr et al. [22] has initiated 
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the use of Line Spring Model and applied the relationship of the stresses at the crack 

location and at far sides of the plate to formulate the crack terms. On extending the work 

of Ref. [22] and modifying the equation of motion to accommodate the effect of crack 

orientation Ismail and Cartmell [23] obtained new relations for the nominal tensile and 

bending stresses for the plate containing variably orientated single crack. Thus, in order to 

develop an analytical model for the plate containing multiple part-through cracks it is 

necessary to obtain new relationship of the stresses. Applying the Line Spring Model for 

the two variably oriented cracks, we find the out-plane transformation of stresses along 

the axis of plane “𝑥𝐶 − 𝑦𝐶” and “𝑥𝐷 − 𝑦𝐷” as depicted in Fig. 2. 

Considering the uniaxial state of stresses and taking 𝑚𝑥and σ𝑥equal to zero for 

variably oriented cracks, a plane transformation of the stresses to the “𝑥𝐶 − 𝑦𝐶” plane can 

be expressed as: 

σ𝑥𝐶  =
σ𝑦

2
(1 − cos 2𝜃) 

σ𝑦𝐶 =
σ𝑦

2
(1 + cos 2𝜃) 

 𝜏𝑥𝑦𝐶 =
σ𝑦

2
sin 2𝜃 

(3) 

 

𝑚𝑥𝐶
=
𝑚𝑦

2
(1 − cos 2𝜃) 

𝑚𝑦𝐶
=
𝑚𝑦

2
(1 + cos 2𝜃) 

𝑚𝑥𝑦𝐶
=
𝑚𝑦

2
sin 2𝜃 

(4) 

Similarly, by transformation of stresses along the “𝑥𝐷 − 𝑦𝐷”, we get: 

σ𝑥𝐷  =
σ𝑦

2
−
σ𝑦

2
cos 2𝛽 

σ𝑥𝐷  =
σ𝑦

2
−
σ𝑦

2
cos 2𝛽 

𝜏𝑥𝑦𝐷 =
σ𝑦

2
sin 2𝛽 

(5) 

 

𝑚𝑥𝐷
=
𝑚𝑦

2
−
𝑚𝑦

2
cos 2𝛽 

𝑚𝑦𝐷
=
𝑚𝑦

2
+
𝑚𝑦

2
cos 2𝛽 

𝑚𝑥𝑦𝐷
=
𝑚𝑦

2
sin 2𝛽 

(6) 
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Figure 2. Tensile and bending stresses acting on the plate (Line Spring Model) 

Considering the uniaxial loading, the relationship between the normal tensile and bending 

stress (𝜎𝑚𝑛 and 𝑚𝑚𝑛) at the crack location and the normal tensile and bending stress (𝜎𝑚𝑛 

and 𝑚𝑚𝑛) at the far sides of the plate with multiple cracks is given as 

𝜎𝑚𝑛 =  
2𝑎

(6𝛼𝑡𝑏 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

𝜎𝑚𝑛  (7) 

𝑚𝑚𝑛 =  
2𝑎

3 (
𝛼𝑡𝑏
6
+ 𝛼𝑏𝑏) (3 +  𝜈)( 1 −  𝜈)ℎ + 2𝑎 

𝑚𝑚𝑛 
(8) 
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In the tangential direction the relationship between the tangential tensile and bending 

stress (𝜎𝑝𝑞 and 𝑚𝑝𝑞) at the crack location and the tangential tensile and bending stress 

(𝜎𝑝𝑞 and 𝑚𝑝𝑞) at the far sides of the plate is given as 

𝜎𝑝𝑞 =  
2𝑎

(6𝑐𝑡𝑏 + 𝑐𝑡𝑡)(1 + 𝜈)ℎ + 2𝑎
𝜎𝑝𝑞 (9) 

𝑚𝑝𝑞 =  
2𝑎

3 (
𝑐𝑡𝑏
6
+ 𝑐𝑏𝑏) ( 1 +  𝜈)ℎ + 2𝑎 

𝑚𝑝𝑞 
(10) 

Where, 𝛼𝑏𝑏 and 𝑐𝑏𝑏 are the dimensionless bending or twisting compliances, 𝛼𝑡𝑡 and 𝑐𝑡𝑡 
are the dimensionless stretching compliances and 𝛼𝑡𝑏 = 𝛼𝑏𝑡 and 𝑐𝑡𝑏 = 𝑐𝑏𝑡 are the 

dimensionless stretching-bending or stretching-twisting compliance coefficients at the 

crack centre, respectively. These compliance coefficients are rigorously used and can be 

found in literature (Ref. [22-24, 27]). The above relationship of tensile and bending 

stresses can be expressed in form of tensile and bending force effects. Therefore, Eq.  

(8) – (10) can be stated in terms of forces and moments for all the four cracks which are 

given as 

𝑁𝑥 = 
2𝑏

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑏

𝑁𝑥 (11) 

𝑀𝑥 = 
2𝑏

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑏

𝑀𝑥 (12) 

𝑁𝑦 = 
2𝑎

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

𝑁𝑦
  

+ 
𝑐(1 + cos 2𝜃)

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

 𝑁𝑦

+                     
𝑑(1 + cos 2𝛽)

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

𝑁𝑦 

(13) 

𝑀𝑦 = 
2𝑎

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑎

𝑀𝑦

  

+ 
𝑐(1 + cos 2𝜃)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

𝑀𝑦

+           
𝑑(1 + cos 2𝛽)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

𝑀𝑦 

(14) 

𝑁𝑥𝑦 = 
𝑐 sin 2𝜃

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑐

𝑁𝑦 +
𝑑 sin 2𝛽

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑑

𝑁𝑦 (15) 
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𝑀𝑥𝑦 =
𝑐 sin 2𝜃

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

𝑀𝑦

+ 
𝑑 sin 2𝛽

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

𝑀𝑦 

(16) 

These compliance coefficients are functions of crack depth and plate thickness. Since, the 

cracks cause reduction in overall stiffness of the plate, thus Eqs. (11) to (16) are employed 

with a negative sign, as discussed in literature [23, 24]. Expressing the terms 𝑁𝑥, 𝑁𝑦 ,𝑀𝑥, 

𝑀𝑦, 𝑁𝑥𝑦, 𝑀𝑥𝑦 from Eq. (11) to (16) and substituting 𝑀𝑥, 𝑀𝑦 and 𝑀𝑥𝑦 in terms of deflection 

𝑤, the governing equation of plate containing multiple cracks can be expressed as, 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+  2 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 
𝜕4𝑤

𝜕𝑦4
)

= −𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+

2𝑎𝐷(
𝜕4𝑤
𝜕𝑦4

+  𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑎

+ 
𝑐𝐷(1 + cos 2𝜃)(

𝜕4𝑤
𝜕𝑦4

+  𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

 

+ 
𝑑𝐷(1 + cos 2𝛽)(

𝜕4𝑤
𝜕𝑦4

+  𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

+ 
2𝑏𝐷(

𝜕4𝑤
𝜕𝑥4

+  𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑏

+ 
𝑐𝐷 sin 2𝜃(

𝜕4𝑤
𝜕𝑦4

+  𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

 

(17) 



Vibrations in Physical Systems 2018, 29, 2018022 (10 of 25) 

+ 
𝑑𝐷 sin 2𝛽 (

𝜕4𝑤
𝜕𝑦4

+  𝜈
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
)

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

−
2𝑎

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

𝑁𝑦
𝜕2𝑤

𝜕𝑦2

−
𝑐(1 + 𝑐𝑜𝑠 2𝜃)

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

𝑁𝑦
𝜕2𝑤

𝜕𝑦2
 

−
𝑑(1 + cos 2𝛽)

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

𝑁𝑦
𝜕2𝑤

𝜕𝑦2

−
2𝑏

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑏

𝑁𝑥
𝜕2𝑤

𝜕𝑥2

−
𝑐 𝑠𝑖𝑛 2𝜃

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑐

𝑁𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
 

−
𝑑 sin 2𝛽

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑑

𝑁𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑧 

2.2. Solution of governing equation 

Galerkin's method is a weighted residual technique to obtain solution of integral and 

differential equations and has wide applicability to global phenomenon like vibrations. In 

this case, the lateral deflection is a function of in-plane coordinates and time which can be 

separated by the Galerkin's method to obtain approximate solution. Such application of 

Galerkin's method is evident in the recent literature for vibration analysis of cracked plates 

[22, 24, 27]. Hence on applying the Galerkin's method, the general solution for transverse 

deflection of the plate can be written as  

𝑤(𝑥, 𝑦, 𝑡) = ∑∑ 𝐴𝑚𝑛

∞

𝑚=1

𝑋𝑚𝑌𝑛𝜓𝑚𝑛(𝑡)

∞

𝑛=1

 (18) 

Where, 𝑋𝑚and 𝑌𝑛 are characteristic or modal functions of cracked plate in x and y 

direction respectively. 𝐴𝑚𝑛 is arbitrary amplitude and 𝜓𝑚𝑛(𝑡) is time dependent modal 

coordinate. Two boundary conditions SSSS and CCSS are considered in this work. The 

appropriate expressions for the characteristic or modal functions satisfying the stated 

boundary conditions are given below in Eq. (19) and (20). 
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1) SSSS: all edges simply supported 

𝑋𝑚 = ∑ sin

∞

𝑚=1

(
𝑚𝜋𝑥

𝐿1
) 

𝑌𝑛 = ∑ sin

∞

𝑛=1

(
𝑛𝜋𝑦

𝐿2
) 

(19) 

2) CCSS: Two adjacent edges clamped and the other two simply supported 

𝑋𝑚 = ∑ sin

∞

𝑚=1

(
𝑚𝜋𝑥

𝐿1
) sin (

𝑚𝜋𝑥

2𝐿1
) 

𝑌𝑚 = ∑ sin

∞

𝑚=1

(
𝑚𝜋𝑦

𝐿1
) sin (

𝑚𝜋𝑦

2𝐿1
) 

(20) 

Using Berger’s formulation it is possible to define 𝑁𝑥 and 𝑁𝑦 in terms of the lateral 

deflection. The formulation simplifies the analysis of deflection by neglecting the strain 

energy due to the second invariant of the middle surface strains. The in-plane forces 𝑁𝑥 

and 𝑁𝑦 can be expressed in terms of middle surface strains as discussed in Ref. [24]. Hence 

on expressing the middle surface strain in terms of deflection, the in-plane forces can be 

written as  

𝑁𝑥 = 𝐷
6

ℎ2𝐿1𝐿2
∑∑∫ ∫ {(

𝜕𝑋𝑚
𝜕𝑥

)2𝑌𝑛
2

𝐿2

0

𝐿1

0

∞

𝑚=1

∞

𝑛=1

+ 𝜈(
𝜕𝑌𝑛
𝜕𝑦
)2𝑋𝑚

2} 𝑑𝑥 𝑑𝑦 𝐴𝑚𝑛
2𝜓𝑚𝑛(𝑡)

2 

(21) 

𝑁𝑦 = 𝐷
6

ℎ2𝐿1𝐿2
∑∑∫ ∫ {(

𝜕𝑌𝑛
𝜕𝑦
)2𝑋𝑚

2
𝐿2

0

𝐿1

0

∞

𝑚=1

∞

𝑛=1

+  𝜈(
𝜕𝑋𝑚
𝜕𝑥

)2𝑌𝑛
2} 𝑑𝑥 𝑑𝑦 𝐴𝑚𝑛

2𝜓𝑚𝑛(𝑡)
2 

(22) 

On substituting Eq. (21) and Eq. (22) and applying the definition of 𝑤(𝑥, 𝑦, 𝑡) to Eq. (17), 

multiplying both sides by 𝑋𝑚, 𝑌𝑛 and then integrating over the plate area, the governing 

equation becomes 
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𝜌ℎ

𝐷
∑∑ 𝐴𝑚𝑛

∞

𝑚=1

∞

𝑛=1

∫ ∫ 𝑋𝑚
2 𝑌𝑛

2
𝐿2

0

𝐿1

0

𝑑𝑥 𝑑𝑦
𝜕2𝜓𝑚𝑛(𝑡)

𝜕𝑡2

+∑∑ 𝐴𝑚𝑛

∞

𝑚=1

∞

𝑛=1

𝜓𝑚𝑛(𝑡)∫ ∫ {(𝑋𝑚
𝑖𝑣𝑌𝑛 + 2𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)
𝐿2

0

𝐿1

0

−
2𝑎(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑎

−
𝑐(1 + cos 2𝜃)(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

−
𝑑(1 + cos 2𝛽)(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

−
𝑐 sin 2𝜃(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

−
𝑑 sin 2𝛽 (𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

−
2𝑏(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑋𝑚

𝑖𝑣𝑌𝑛)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑏

}𝑋𝑚𝑌𝑛 𝑑𝑥 𝑑𝑦

+∑∑ 𝐴𝑚𝑛
3

∞

𝑚=1

∞

𝑛=1

𝜓𝑚𝑛(𝑡)
3∫ ∫ {

2𝑎𝐵2𝑚𝑛𝑌𝑛
𝑖𝑖𝑌𝑛 𝑋𝑚

2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

    
𝐿2

0

𝐿1

0

+ 
2𝑏𝐵1𝑚𝑛𝑋𝑚

𝑖𝑖𝑋𝑚𝑌𝑛
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑏

+
2𝑎𝐵2𝑚𝑛𝑌𝑛

𝑖𝑖𝑌𝑛 𝑋𝑚
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

+ 
𝑐(1 + cos 2𝜃)𝐵2𝑚𝑛𝑌𝑛

𝑖𝑖𝑌𝑛 𝑋𝑚
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

+
𝑑(1 + cos 2𝛽)𝐵2𝑚𝑛𝑌𝑛

𝑖𝑖𝑌𝑛 𝑋𝑚
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

+   
𝑐 (sin 2𝜃) 𝐵2𝑚𝑛𝑋𝑚

𝑖 𝑌𝑛
𝑖𝑋𝑚𝑌𝑛 

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑐

+
𝑑 (sin 2𝛽) 𝑋𝑚

𝑖 𝑌𝑛
𝑖𝑋𝑚𝑌𝑛 

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑑

}𝑑𝑥 𝑑𝑦 =0   

(23) 
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where,  

B1mn = 
6

ℎ2𝐿1𝐿2
∑∑∫ ∫ {(

𝜕𝑋𝑚
𝜕𝑥

)2𝑌𝑛
2 +  𝜈(

𝜕𝑌𝑛
𝜕𝑦
)2𝑋𝑚

2} 𝑑𝑥 𝑑𝑦
𝐿2

0

𝐿1

0

∞

𝑚=1

∞

𝑛=1

 

B2mn =
6

ℎ2𝐿1𝐿2
∑∑∫ ∫ {(

𝜕𝑌𝑛
𝜕𝑦
)
2

𝑋𝑚
2 +  𝜈 (

𝜕𝑋𝑚
𝜕𝑥

)
2

𝑌𝑛
2} 𝑑𝑥 𝑑𝑦

𝐿2

0

𝐿1

0

∞

𝑚=1

∞

𝑛=1

 

(24) 

The modal peak amplitude 𝐴𝑚𝑛 is normalized to unity. The lateral load 𝑃𝑧 is neglected 

here for free vibrations. Eq. (23) may be expressed in the form of well-known Duffing 

equation as 

𝑀𝑚𝑛

𝜕2𝜓𝑚𝑛(𝑡)

𝜕𝑡2
+  𝐾𝑚𝑛𝜓𝑚𝑛(𝑡) +   𝐺𝑚𝑛𝜓𝑚𝑛(𝑡)

3    =   0 (25) 

where, 

𝑀𝑚𝑛 =
𝜌ℎ

𝐷
∑∑ 𝐴𝑚𝑛

∞

𝑚=1

∞

𝑛=1

∫ ∫ 𝑋𝑚
2𝑌𝑛

2
𝐿2

0

𝑑𝑥 𝑑𝑦
𝐿1

0

 (26) 

 

𝐾𝑚𝑛 = ∑ ∑ 𝐴𝑚𝑛

∞

𝑚=1

∞

𝑛=1

∫ ∫ {(𝑋𝑚
𝑖𝑣𝑌𝑛 + 2𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚 )
𝐿2

0

𝐿1

0

−
2𝑎(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑎

−
𝑐(1 + cos 2𝜃)(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

−
𝑑(1 + cos 2𝛽)(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

−
𝑐 sin 2𝜃(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑐

−
𝑑 sin 2𝛽 (𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑌𝑛

𝑖𝑣𝑋𝑚)

3 (
𝐶𝑏𝑡
6
+ 𝐶𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑑

−
2𝑏(𝜈𝑋𝑚

𝑖𝑖𝑌𝑛
𝑖𝑖 + 𝑋𝑚

𝑖𝑣𝑌𝑛)

3 (
𝛼𝑏𝑡
6
+ 𝛼𝑏𝑏) (3 + 𝜈)(1 − 𝜈)ℎ + 2𝑏

}𝑋𝑚  𝑌𝑛 𝑑𝑥 𝑑𝑦 

(27) 
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𝐺𝑚𝑛 =∑∑ 𝐴𝑚𝑛
3

∞

𝑚=1

∞

𝑛=1

∫ ∫ {
2𝑎𝐵2𝑚𝑛𝑌𝑛  

𝑖𝑖𝑌𝑛    𝑋𝑚
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

    
𝐿2

0

𝐿1

0

+ 
2𝑏𝐵1𝑚𝑛𝑋𝑚  

𝑖𝑖𝑋𝑚  𝑌𝑛
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

+ +
𝑐(1 + cos 2𝜃)𝐵2𝑚𝑛𝑌𝑛

𝑖𝑖𝑌𝑛 𝑋𝑚
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

+
𝑑(1 + cos 2𝛽)𝐵2𝑚𝑛𝑌𝑛

𝑖𝑖𝑌𝑛 𝑋𝑚
2

(6𝛼𝑏𝑡 + 𝛼𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑎

+   
𝑐 (sin 2𝜃)𝐵2𝑚𝑛𝑋𝑚

𝑖 𝑌𝑛
𝑖𝑋𝑚𝑌𝑛 

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑐

+
𝑑 (sin 2𝛽) 𝑋𝑚

𝑖 𝑌𝑛
𝑖𝑋𝑚𝑌𝑛 

(6𝐶𝑏𝑡 + 𝐶𝑡𝑡)(1 − 𝜈
2)ℎ + 2𝑑

}𝑑𝑥 𝑑𝑦 

(28) 

The natural frequency 𝜔 can be calculated from Eq. (26) and (27) as 

𝜔𝑚𝑛 = √
𝐾𝑚𝑛
𝑀𝑚𝑛

 (29) 

Eq. (26) shows the mass of the cracked plate which is same as the mass of intact plate. 

This is so because all the cracks are in the form of continuous line and due to presence of 

continuous line cracks the reduction in mass of the plate is negligible. Eq. (27) shows the 

stiffness of the cracked plate having the last six terms being the reduction in stiffness due 

to the presence of four cracks. 

3. Results and discussion 

This section presents new results for fundamental frequencies of cracked rectangular 

isotropic plate with two perpendicular cracks parallel to the either edges of the plate and 

two variably oriented cracks in the form of continuous line and located at the centre. The 

first mode natural frequencies are presented for different parameters such as crack length, 

crack orientation, plate aspect ratio and boundary conditions. Two different boundary 

conditions (SSSS and CCSS) and three plate aspect ratios (L1/L2) are considered for 

analysis. The material properties taken are E = 7.03∙1010 N/m2, density  

𝜌 = 2660 kg/m3, Poisson’s ratio 𝜈 = 0.33, and plate thickness h = 0.01 m. The depth of 

cracks ‘e’ throughout this work is taken as 0.006 m.  

The validation study of the proposed model is carried out by comparing the results of 

natural frequencies of an intact plate (Table 1 (a)) and with single crack (Table 1 (b)) with 

two perpendicular cracks (Table 2) and also for a plate with a single variably oriented 

crack (Table 3). Table 1 shows the first mode natural frequencies of an intact plate as well 

as plate with a single crack for three plate aspect ratios (L1/L2), two boundary conditions 
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(SSSS and CCSS) and two half crack lengths, a = 0.01 m, a = 0.025 m. The present results 

are compared in Table 1 by considering only one crack length ‘a’ (b = c = d = 0).  

The obtained results are in very close agreement when they are compared with the existing 

literature. 

Table 1(a). First mode natural frequency (rad/sec) of intact plate for two different 

boundary conditions 

BC* 
Plate 

dimension 
Intact plate 

 L1 L2 Present Ref.[22][24] 
%  

Difference 

SSSS 1 1 310.31 310.30 0.0032 

 0.5 1 775.90 775.90 0.0000 

 1 0.5 775.91 775.90 0.0013 

CCSS 1 1 445.73 445.70 0.0067 

 0.5 1 1161.80 1161.80 0.0000 

 1 0.5 1161.80 1161.80 0.0000 

                                 *Boundary Condition 

Table 1(b). First mode natural frequency (rad/sec) of cracked plate for two different 

boundary conditions 

BC* 
Plate 

Dimension 

Cracked plate 

a = 0.01 a = 0.025 

 L1 L2 Present 
Ref. 

[24] 

%  

Difference 
Present 

Ref. 

[24] 

%  

Difference 

SSSS 1 1 301.11 302.10 0.33 291.82 293.50 0.57 

 0.5 1 769.44 770.10 0.09 763.17 764.30 0.15 

 1 0.5 727.01 732.70 0.78 675.88 685.60 1.42 

CCSS 1 1 430.79 432.50 0.40 415.74 418.50 0.66 

 0.5 1 1153.30 1154.20 0.08 1145.10 1146.50 0.12 

 1 0.5 1080.45 1089.90 0.87 994.51 1011.10 1.64 

   *Boundary Condition 

Similarly, Table 2 shows natural frequencies of a plate containing two perpendicular 

cracks parallel to the either edges of the plate. Results are compared by considering two 

crack lengths ‘a’ and ‘b’ in the proposed model (c = d = 0). It is seen from Table 2, the 

presence of two surface cracks in a plate further decreases the natural frequency as 

compared to single crack.  
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The results are also validated for a plate containing single crack of variable  orientation 

(Ref. [23]). Considering two mutually perpendicular cracks ‘a = b = 0’ and one arbitrarily 

oriented crack ‘d = 0’ and presenting the result only for single arbitrarily oriented crack 

‘c’, the proposed model reduced to the model proposed by Ismail and Cartmell [23]. Table 

3 shows results for isotropic plate with a single arbitrarily oriented crack. It can be seen 

from the obtained results of Table 3 that the natural frequency of the cracked plate 

increases with increase in the crack orientation angle θ for both the boundary conditions. 

This similar trend was also obtained in the study of Ismail and Cartmell [23]. It is evident 

from the results that the natural frequency of the plate with same angular orientation of 

crack is higher in case of CCSS boundary condition as compared to SSSS boundary 

condition. 

Table 2. First mode natural frequency (rad/sec) of plate containing two perpendicular 

cracks for two boundary conditions 

Boundary 

condition 

Plate 

Dimension 

Cracked plate 

a = b = 0.01 a = b = 0.025 

 L1 L2 Present Ref. [24] Present 
Ref. 

[24] 

SSSS 1 1 291.61 291.80 272.06 272.20 

 0.5 1 720.22 720.70 661.34 661.80 

 1 0.5 720.22 720.70 661.34 661.80 

CCSS 1 1 415.39 408.90 383.48 384.70 

 0.5 1 1071.35 1072.40 974.83 975.60 

 1 0.5 1071.35 1072.40 974.83 975.60 

New results for fundamental frequencies of an isotropic plate containing two mutually 

perpendicular cracks parallel to either edges of the plate and two arbitrarily oriented cracks 

located at the centre of the plate are presented for two boundary conditions i.e. all edges 

simply supported (SSSS) (Table 4) and two adjacent edges simply supported and other 

two clamped (CCSS) (Table 5). The results are presented for different plate aspect ratios, 

crack lengths and various combinations of crack orientations. The inclination angles of 

crack ‘C’ and ‘D’ are varied between 15° to 45° and 135° to 165° respectively. It is 

observed from results of above combination of inclination angles that when crack ‘C’ and 

‘D’ goes on orienting towards crack ‘A’, the natural frequency of the plate decreases and 

when cracks orients away from the crack ‘A’, the natural frequency of the plate increases. 

The results show such a trend because the uniaxial state of stresses is considered for 

formulation of crack terms. The results are in similar fashion for both SSSS and CCSS 

boundary conditions. Similarly, on increasing the crack lengths, stiffness of the plate 

decreases which results in decrease of the natural frequency of the plate. The results shows 

that the plates are very sensitive to the number of cracks, crack length and crack orientation 

angle. 
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Table 3. First mode natural frequency (rad/sec) of plate with variably oriented single 

crack for SSSS and CCSS boundary condition 

B.C. 
Plate 

Dimension 
O

ri
en

ta
ti

o
n

 

A
n

g
le

 

Intact 

plate 

Cracked plate 

a = 0.003 (m) a = 0.0075 (m) 

 L1 L2 
θ 

(deg.) 
Present 

Ref.  

[23] 
Present 

Ref. 

[23] 

Presen

t 

Ref.  

[23] 

SSSS 0.3 0.3 0 1034.4 1034.0 1003.70 1007.20 972.74 978.60 

   20   1007.34 1010.40 980.15 985.85 

   40   1016.50 1018.60 998.68 1002.04 

   60   1026.81 1027.70 1019.34 1020.72 

   80   1033.49 1033.60 1032.62 1032.76 

 0.15 0.15 0 4137.6 4138.0 4014.83 4028.20 3890.97 3914.40 

   20   4029.39 4041.80 3920.63 3943.40 

   40   4066.02 4074.20 3994.73 4008.16 

   60   4107.27 4110.70 4077.36 4082.88 

   80   4133.97 4134.40 4130.40 4131.04 

CCSS 0.3 0.3 0 1485.6 1486.0 1435.99 1441.70 1385.80 1395.27 

   20   1441.88 1446.80 1397.83 1406.06 

   40   1456.67 1459.90 1427.86 1433.16 

   60   1473.32 1474.60 1461.25 1463.41 

   80   1484.08 1484.20 1482.64 1482.88 

 0.15 0.15 0 5942.2 5942.0 5743.96 5766.80 5543.18 5581.08 

   20   5767.51 5787.40 5591.33 5624.24 

   40   5826.70 5839.50 5711.43 5732.64 

   60   5893.28 5898.50 5845.01 5853.64 

   80   5936.34 5936.90 5930.58 5931.52 
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Table 4. First mode natural frequency of plate with multiple cracks 

for SSSS boundary condition 

Plate 

dimension 

Crack 

orientation 

 Frequency (rad/sec) 

Intact Cracked 

L1 L2 θ, β (deg.)  
a = b =  

c = d = 0.01 

a = b =  

c = d = 0.02 

a = b = 

c = d = 0.05 

1 1 45,135 310.3 281.79 259.93 216.13 

  30,150  276.75 250.55 196.09 

  15,165  273.01 243.46 180.01 

0.5 1 45,135 775.8 690.75 624.28 485.56 

  30,150  675.54 595.29 418.03 

  15,165  664.18 573.13 360.67 

1 0.5 45,135 775.8 690.75 624.28 485.56 

  30,150  675.543 595.29 418.03 

  15,165  664.18 573.13 360.67 

0.5 0.5 45,135 1241 1127.17 1039.74 864.55 

  30,150  1107.01 1002.22 784.36 

  15,165  1092.01 973.84 720.01 

Table 5. First mode natural frequency of plate with multiple cracks 

for CCSS boundary condition 

Plate 

dimension 

Crack 

orientation 

 Frequency (rad/sec) 

Intact Cracked 

L1 L2 θ, β (deg.)  
a = b = 

c = d = 0.01 

a = b = 

c = d = 0.02 

a = b = 

c = d = 0.05 

1 1 45,135 445.66 399.4 363.48 289.58 

  30,150  391.16 347.9 254.43 

  15,165  385.01 336.04 225.24 

0.5 1 45,135 1161.8 1023.15 913.56 678.8 

  30,150  998.18 865.3 559.12 

  15,165  979.5 828.18 451.84 

1 0.5 45,135 1161.8 1023.15 913.56 678.8 

  30,150  998.18 865.3 559.12 

  15,165  979.5 828.18 451.84 

0.5 0.5 45,135 1782.7 1597.6 1453.93 1158.35 

  30,150  1564.64 1391.61 1017.72 

  15,165  1540.05 1344.16 900.96 
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4. Conclusions  

An analytical model for vibration analysis of thin isotropic rectangular plate with multiple 

cracks is presented. Cracks are in the form of continuous line and are of definite crack 

length and crack orientation. Effect of various parameters like crack length, plate aspect 

ratio, crack orientation on SSSS and CCSS boundary conditions on fundamental frequency 

of the isotropic plate is presented. It is concluded from the obtained results that the 

presence of cracks affects the fundamental frequencies, since the presence of crack reduces 

the stiffness of the plate. It is also found that the fundamental frequency decreases with 

the increase in number of cracks and their length whereas; the increase in crack orientation 

increases the fundamental frequencies of the plate. Also, the presence of cracks affects 

more on CCSS boundary condition as compared to SSSS boundary condition. The 

fundamental frequency of the plate containing multiple cracks is found to be maximum 

when θ = 45° and β = 135° and goes on decreasing when θ orients from 45° to 15° and β 

orients from 135° to 165°. Although, the analytical model is preferred over FEM and 

experimental results owing to the fact that analytical models are fast and accurate but there 

are few limitations too. The present model gives comparatively correct results for the 

values of crack orientation between -45° to 45° and 135° to 225° than other orientations 

as the uniaxial state of stresses are considered for formulation of crack terms. 

Discontinuities in engineering structures are always a matter of concern owing to safe and 

continuous working of dynamic systems. The detection and effects of such flaws is a 

recent topic of interest for researchers and hence there is lot of scope in this growing area. 

Future scope of this study includes analytical and experimental analysis of fundamental 

frequencies for cylindrical, spherical and conical shells with some discontinuous line 

cracks on various boundary conditions.  
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APPENDIX I 

Consider the plate element with multiple cracks located at the centre of the plate as shown 

in Fig. A1. The moments and in-plane forces are considered according to the Kirchoff’s 

classical plate theory [3]. Taking moments along the x and y directions and summation of 

the forces along the z direction, we get 

𝜕2𝑀𝑥

𝜕𝑥2
+ 
𝜕2𝑀𝑦

𝜕𝑦2
+
𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑦

𝜕𝑦2
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
=  𝜌ℎ

𝜕2𝑤

𝜕𝑡2
− 𝑃𝑧 (A1) 

Where, 𝑀𝑥 ,𝑀𝑦 are the bending moments per unit length along the x and y-directions and 

𝑀𝑥𝑦 is the twisting moment. 𝑀𝑥 ,𝑀𝑦 are the bending moments per unit length due to 

multiple cracks and 𝑀𝑥𝑦 is the twisting moment which occurs when the crack is inclined 

to either edges [23]. 

 

Figure A1. Plate element showing moments and transverse forces acting on mid plane 

𝑀𝑥 ,𝑀𝑦 and 𝑀𝑥𝑦 are related with the transverse displacement as 

𝑀𝑥 = −𝐷 (
𝜕2𝑤

𝜕𝑥2
+  𝜈

𝜕2𝑤

𝜕𝑦2
) (A2) 

𝑀𝑦 = −𝐷 (
𝜕2𝑤

𝜕𝑦2
+  𝜈

𝜕2𝑤

𝜕𝑥2
) (A3) 

𝑀𝑥𝑦 = −𝑀𝑦𝑥  = −𝐷(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝜕𝑦
 (A4) 
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Where D is the flexural rigidity. E is the modulus of elasticity and v is Poisson's ratio. On 

Substituting Eq. (A2) – (A4) into Eq. (A1) the following equation becomes 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+  2 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 
𝜕4𝑤

𝜕𝑦4
) = −𝜌ℎ

𝜕2𝑤

𝜕𝑡2
+
𝜕2𝑀𝑦

𝜕𝑦2
+
𝜕2𝑀𝑥

𝜕𝑥2
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+ 𝑃𝑧 (A5) 

 

 

Figure A2. In-plane forces in a cracked plate element 

The equilibrium of in-plane forces per unit length for the cracked plate element is shown 

in Fig. A2. 𝑁𝑦 is the in-plane force due to presence of cracks along x-axis or inclination 

of cracks towards x-axis. Similarly 𝑁𝑥 and 𝑁𝑥𝑦 is due to presence of cracks along y-axis 

and inclined cracks respectively. 

In the absence of body forces, the summation of membrane forces along x axis leads to, 

𝜕𝑁𝑥
𝜕𝑥

+ 
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑦𝑥

𝜕𝑦
+
𝜕𝑁𝑦𝑥

𝜕𝑦
=  0 (A6) 

The summation of all forces along y axis leads to: 

𝜕𝑁𝑦

𝜕𝑦
+ 
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑥
=  0 (A7) 
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Figure A3. Equilibrium of in-plane forces along z axis 

From Fig. A3, the projection of in-plane forces along z axis leads to, 

∑𝐹𝑧 = (𝑁𝑥 + 
𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥 + 𝑁𝑥 + 
𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥)𝑑𝑦
𝜕2𝑤

𝜕𝑥2
𝑑𝑥

+ (𝑁𝑦 + 
𝜕𝑁𝑦

𝜕𝑦
𝑑𝑦 + 𝑁𝑦 + 

𝜕𝑁𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑥

𝜕2𝑤

𝜕𝑦2
𝑑𝑦 + (𝑁𝑥𝑦

+
𝜕𝑁𝑥𝑦

𝜕𝑥
𝑑𝑥 + 𝑁𝑥𝑦 +

𝜕𝑁𝑥𝑦

𝜕𝑥
𝑑𝑥)𝑑𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
𝑑𝑥 + (𝑁𝑦𝑥

+
𝜕𝑁𝑦𝑥

𝜕𝑦
𝑑𝑦 + 𝑁𝑦𝑥 +

𝜕𝑁𝑦𝑥

𝜕𝑦
𝑑𝑦)𝑑𝑥

𝜕2𝑤

𝜕𝑥𝜕𝑦
𝑑𝑦 

(A8) 

Simplifying this equation by neglecting the higher order terms leads to, 

∑𝐹𝑧 = 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦

+ 2𝑁𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(A9) 

Due to the crack of length 2a, there is discontinuity across y direction and hence 

𝑁𝑦 and 𝑁𝑥𝑦 has to be neglected for equilibrium. Similarly along the crack length 2b, 

𝑁𝑥  and𝑁𝑦𝑥 has to be neglected due to the discontinuity across x axis. Ismail and Cartmell 

[23] considered various angular orientations for a single crack and developed a relation 

between 𝑁𝑥𝑦 and 𝑁𝑦. Their work shows that the in-plane shear 𝑁𝑥𝑦 appears only when the 
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crack is inclined to the edge of the plate. In this work, the two perpendicular cracks are 

parallel to the edges of the plate and two other cracks are of arbitrary angular orientation, 

thus neglecting the terms 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦, Eq. (A9) can be written as, 

∑𝐹𝑧 = 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (A10) 

Adding the membrane forces given by Eq. (A10) to the equation of motion Eq. (A5) leads 

to the governing equation of cracked plate with simultaneous bending and stretching. 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+  2 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 
𝜕4𝑤

𝜕𝑦4
)

= −𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+
𝜕2𝑀𝑦

𝜕𝑦2
+
𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2

+ 𝑁𝑦
𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑃𝑧 

(A11) 

Eq. (A11) is the final equation of motion for rectangular plate containing multiple cracks. 

 


