PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decision theory under general uncertainty

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exposure of Toyota management’s cover-up of its faulty car component problems raises a fundamental question: did Toyota management make an appropriate decision taking all uncertainties into account? Statistical decision theory is a framework with a probabilistic foundation, which admits random uncertainty about the real world and human thinking. In general, the uncertainty of the real world is diversified and therefore the effort of trying to deal with different forms of uncertainty with one special form of uncertainty, namely random uncertainty, may be oversimplified. In this paper, we introduce an axiomatic uncertain measure theoretical framework and explore the essential mechanism in formulating a general uncertainty decision theory. We expect that a new understanding of uncertainty and development of a corresponding new uncertainty decision-making approach may assist intelligence communities to survive and deal with the extremely tough and diverse aspects of an uncertain reality.
Rocznik
Strony
51--66
Opis fizyczny
Bibliogr. 8 poz., tab.
Twórcy
autor
  • University of Cape Town, Cape Town, South Africa
autor
  • University of Cape Town, Cape Town, South Africa
autor
  • University of Cape Town, Cape Town, South Africa
autor
  • South African National Biodiversity Institute, Cape Town, South Africa
Bibliografia
  • [1] Carvalho, H. & Machado, V. C. (2006). Fuzzy set theory to establish resilient production systems. Proc. of IIE Annual Conference and Exhibition.
  • [2] DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, Inc, New York, USA.
  • [3] Ferguson, T. S. (1967). Mathematical Statistics. A Decision Theoretic Approach. Academic Press Inc, New York, USA.
  • [4] Kolmogorov, A. N. (1950). Foundations of the Theory of Probability. Translated by Nathan Morrison, Publisher: Chelsea, New York.
  • [5] Liu, B. D. (2007). Uncertainty Theory: An Introduction to Its Axiomatic Foundations. 2nd Edition; Berlin: Springer-Verlag Heidelberg.
  • [6] Liu, B. D. (2010). Uncertainty Theory. 3nd Edition (Drafted version).
  • [7] Peng Z. X. & Iwamura, K. (2009). A sufficient and necessary condition of uncertainty distribution.http://orsc.edu.cn/online/090305.pdf.
  • [8] Primas, H. (1999). Basic Elements and Problems of Probability Theory. Journal of Scientific Exploration, Vol. 13, No. 4, pp. 579-613.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f86c2cc-77fc-412c-a38d-a8f73383ae8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.