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1. Introduction 

Recently a “Made in Japan” crisis began spreading  

widely, triggered by a Toyota Prius brake fault, a 

fire-sparking Honda Jazz electric-window, and a 

Sony Camera problem, and a cover-up of faulty 

seats for Boeing 747 jets. These events have 

shocked worldwide business and industry.  

Journalism today has largely castigated the Toyota 

decision makers for censoring and even hiding 

fault factors from the public, particularly, 

attempting to prevent release to the press. In some 

sense, the journalists are correct, a posteriori, but 

in the decision point of view, they are not 

necessarily correct a priori, because not all the 

“factors” (states of nature) of car making 

necessarily enter into the decision mechanisms – 

the model distributions, as when some states are 

allocated a tiny possibility or ignored. 

Furthermore, active members of safety and 

reliability communities may do well to calmly re-

examine whether or not the theoretical roots and 

foundation of statistical decision theory are 

sufficient for the purpose to which it is applied. 

Randomness is merely one of the forms of 

uncertainty. In consequence, existing statistical 

theory may not always provide a completely 

suitable analysis for data embodying more general 

uncertainty.   

The real world is not as simple as we imagine. 

Uncertainty is intrinsic and diversified in form. For 

example, vagueness is a different form of 

uncertainty from randomness, and enters more and 

more into today’s industrial environments, as 

Carvalho and Machado [1] have commented, “In a 

global market, companies must deal with a high 

rate of changes in business environment. … The 

parameters, variables and restrictions of the 

production system are inherently vagueness.” 

Therefore one may argue that a company decision 

should no longer only be a somewhat routine 

exercise of applying traditional statistical decision 

techniques arising from its sound but constrained 

probabilistic underpinnings. Without a thorough 
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Abstract 

The exposure of Toyota management’s cover-up of its faulty car component problems raises a fundamental 

question: did Toyota management make an appropriate decision taking all uncertainties into account?  

Statistical decision theory is a framework with a probabilistic foundation, which admits random uncertainty 

about the real world and human thinking. In general, the uncertainty of the real world is diversified and 

therefore the effort of trying to deal with different forms of uncertainty with one special form of uncertainty, 

namely random uncertainty, may be oversimplified.  In this paper, we introduce an axiomatic uncertain 

measure theoretical framework and explore the essential mechanism in formulating a general uncertainty 

decision theory. We expect that a new understanding of uncertainty and development of a corresponding 

new uncertainty decision-making approach may assist intelligence communities to survive and deal with the 

extremely tough and diverse aspects of an uncertain reality.  
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and explicit exploration of uncertainty and its 

characteristics, attempts to abstract real world 

uncertainty into appropriate concepts will 

inevitably permit that decision exercises to fall 

short of the reality of business. Our “reality”, its 

diversity, and the formality of a general uncertainty 

are the fundamental rationale for us to pursue the 

exploration of a new general uncertainty decision 

approach.  

Decision making is based on a consensus “truth”, 

whether or not that truth exists in the eyes of other 

communities. Furthermore, some factors, such as 

the faulty seat phenomena and cover-up are not 

repeatable incidents, and cannot admit complete 

probability assignment, i.e., assigning probability 

to such an isolated incident is illogical, but, top 

managements must include such “accident” factors 

in decision-making. Thus, it is logical to say 

decision is a subjective activity. 

The discipline of Statistics builds upon probability 

theory and deals with collecting, analysing, and 

drawing conclusions from data information 

essentially featured by random uncertainty and 

imposed upon modelled pattern (in terms of a 

probability distribution). It is essential to 

emphasize that the mechanism underlying 

statistical decision is the use of probability 

distributions. An uncertainty decision problem is 

essentially the appropriate specification of 

uncertain distributions. 

The fundamental problem here is what uncertainty 

distributions one may invoke to characterize the 

relevant states and events. Recently, Professor 

Baoding Liu from Tsinghua University (Beijing, 

China) proposed an axiomatic uncertainty measure 

theory [6], which is sub- - additive and less 

restrictive than the ( - additive) probability 

measure. A  -algebra, denoted by  A is a 

collection of subsets (events) in a set   satisfying 

three properties: (i)   A ; (ii)  A  A ,  

 cA  A , where cA  is the complement of A in 

 ; (iii)  
1 nn
A




 A  Probability measure and 

uncertain measure may be defined on a  -algebra, 

and each characterises a probability distribution or 

a uncertainty distribution respectively.  By virtue 

of its less restrictive nature, Liu’s [6] uncertain 

measure theory can support uncertainty 

distribution building, analysis and modelling more 

general uncertainty observations and their use in 

the making of  a decision. 

The remainder of the paper is structured as 

follows: Section two introduces Liu’s [1] new 

axiomatic uncertain measure theory, which permits 

the new uncertainty distribution underlying the 

decision mechanism; Section three reviews the 

(probabilistic) statistical decision theory in order to 

reveal the underlying mechanism behind statistical 

decision making – relevant (probability) 

distributions. This review suggests that the new 

general uncertainty decision approach should 

preserve the basic framework of the (probabilistic) 

statistical decision theory but in some conditions 

replace the underlying probability distributions 

with appropriate uncertain distributions. Section 

four discusses the basic elements and some 

intrinsic features of uncertainty decision theory in 

comparisons with statistical decision theory. 

Sections five and six illustrate the general 

uncertainty decision making approach in discrete 

and continuous uncertainty environments 

respectively; Section seven concludes the paper. 

 

2. Uncertain measure foundation    
 

Uncertain measure [6] is an axiomatically defined 

set function mapping from a  -algebra of a given 

space (set) to the unit interval [0,1], which 

provides a measuring grade system for an 

uncertain phenomenon and permits the formal 

definition of an uncertain variable. 

Let   be a nonempty set (space), and  A  the 

 -algebra on  . Each subset A ,  A A  is 

called an uncertain event. A number denoted 

 A ,  0 1A  , is assigned to event A , which 

indicates the uncertain measuring grade with which 

event A  occurs. Occurrence of an event A is 

defined as occurrence of any constituent outcome x 

within A . The set function  A satisfies the 

following axioms given by Liu [6]: 

 

Axiom 1: (Normality)   1  . 

Axiom 2: (Monotonicity)  is non-decreasing: If 

A B , then    A B . 

Axiom 3: (Self-Duality)   is self-dual, If 

 A A , then     1cA A  , where cA  is the 

complement of A in  . 

 Axiom 4: ( - Subadditivity)  
11

i i

ii

A A
 



 
 

 
  

for any countable event sequence  iA . 

 

Definition 2.1. (Liu [6]) Any set function 

: 0,1A  satisfying Axioms L.1-L.4 is called 

an uncertain measure. The triple , ,A  is 

called an uncertain space. 

 



SSARS 2010   

Summer Safety and Reliability Seminars, June 20-26, 2010, Gdańsk-Sopot, Poland 

 

 53 

Definition 2.2. [6] An uncertain variable   is a 

measurable mapping, 

i.e.,      : , ,   A B , where  B  is  the 

Borel - algebra on  ,   . 

 

Remark 2.3. The Borel - algebra is the smallest 

set class of Borel sets on  ,   . The Borel 

sets include   ,   , empty set  , all the 

closed intervals,  ,a b , all the semi-closed 

intervals,  ,a b ,  ,a b ,  ,a  , and  ,b , and 

all the open intervals,  ,a b ,  ,b , and  ,a  , 

where ,a b  , a b     .  

 

Remark 2.4. The fundamental difference between a 

random variable and an uncertain variable is the 

measure space on which they are defined. In the 

associated triples, the first two elements are similar 

in form: the set and a - algebra on the set. 

However, the third elements in the triples: the 

measures defined on the - -algebras, are not 

similar. The former (i.e. the probability measure 

Pr) obeys - additivity and the later (i.e. the 

uncertain measure  obeys only  -subadditivity.  

The choice of a  measure  inevitably has impacts 

on the behaviour of any measurable function on the 

triple.  

 

Definition 2.5. [6] The uncertain distribution 

 : 0,1   of an uncertain variable :   

defined on the uncertain space , ,A  is 

       x x       (1) 

  

Remark 2.6. A random variable X is a measurable 

mapping. To understand the measurability of a 

random variable, particularly, the role played by 

the  -algebra  F , we note how measurability is 

structured for a random variable. Let  , , P F be a 

probability space and   ,B be a measurable 

space on real-line, then a real-valued function X  is 

random variable if and only if the pre-image 

  : X r   F , for all r ,. For each 

value r  taken by a real-valued random 

variable X , the event  ,B r   is an element of 

the Borel  -algebra over a  real-line , the pre-

image of event B under random variable X  is an 

event 

   : :X B X r  (2) 

where   : X r    is an element of 

- algebra F  over  , and the probability measure 

P is defined on this set class, i.e., - algebra F , 

i.e.,  : ,P F 0 1 . Therefore every element (event) 

of F  is assigned with a probability grade, i.e., 

event   : X r    is assigned a probability 

grade, which is   :P X r   .       

Thus,  -algebra F facilitates the formal definition 

of a random variable in terms of the membership 

of the pre-image   : X r    within the 

- algebra F , on which the probability measuring 

grade defined. Every event in  -algebra F  is 

assigned a probability. Each random variable on 

the probability space  , , P F induces a probability 

space   , ,B by means of the following 

well-known correspondence. 

1:   B B P X B P X BB  (3) 

Let us write P X  1  and specifically, the 

probability distribution is defined by the induced 

measure  , 

   ,F r r P X r  (4) 

 

In all, the random variable X  defined on a given 

probability space   , , P F  is a measurable 

mapping to   ,B  and thus induces the 

distribution function,  : 0,1F  , which is used to 

characterize the random variable.  

Similarly, in the axiomatic development of 

uncertain measure, the  -algebra  A plays 

critical roles as the set class in defining both the 

measurability of an uncertain variable   and the 

set function as the uncertain measure. The roles 

are equivalent to the roles played by a  -algebra 

in probability measure theory in defining both the 

measurability of a random variable X  and the set 

function P  as the probability measure. As long as 

an uncertain measure is specified, the uncertain 

distribution  is fully defined. The next theorem 

states the necessary and sufficiency conditions for 

a function to be an uncertain distribution. 

 

Theorem 2.7 [7] Let  : 0,1  be a non-

decreasing function with 

      0, 1.       (5) 

Then set function    : 0,1 B , for any Borel 

set B : 
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0.5 otherwise
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 (6) 

where 

         *

1 2 3 ,B B B B B       B  (7) 

with    : 0,1 ,  1,2,3iv i B , given by 

   
   

  
inf

1

1 lim if inf

1 inf otherwise

x B
x B B

B
B

 
   


 


, (8) 

       2 supB B   , (9) 

and 

    
 

    3
,
inf 1

ca b B
B a b


    , (10) 

is an uncertain measure on the Borel  -algebra,  

 B .  

 

Remark 2.8. Technically, once the induced 

uncertain measure  is defined by Eq. (6), the 

uncertain space   , ,B is established. Then 

the mapping from   , ,B to   , , A can 

be built, i.e., the uncertain measure is fully 

specified. 

For comparison purposes, we note the definition of 

the probability distribution.  

 

Definition 2.9. Let   , , P F be a given 

probability space, the probability distribution of a 

random variable on   , , P F is 

       F x P X x     (11) 

 

Theorem 2.10. Let  : 0,1F  . Then, F  is a 

probability distribution function if and only if 

F satisfies each of the following three conditions: 

(i) lim ( ) 0,  lim ( ) 1
x x

F x F x
 

  ; 

(ii) F(x) is non-decreasing in x; 

(iii) F is right-continuous, i.e., 0x  , 

 
0

0lim ( )
x x

F x F x


 .  

 

Remark 2.11. The difference between a probability 

distribution and an uncertainty distribution relates 

to  whether the distribution possesses right-

continuity. The relaxation of the condition in the 

uncertain distribution function arises from the sub-

 -additivity property of the underlying uncertain 

measure . On the basis of this distributional 

difference, the new uncertainty decision theory 

developed in this paper differs from statistical 

decision theory without relying on any arguments 

about any interpretation differences of the two 

distributions. 

 

Definition 2.12.  (Liu [6]) An n-dimensional 

uncertain vector from an uncertain measure space 

  , , A to the set of n-dimensional real-valued 

vectors, i.e., for Borel set B  within  n ,the set 

       B B        (12) 

is an event. 

 

Theorem 2.13. [6] Let  1 2, , ,
T

n    be an 

uncertain vector, and : nf  a measurable 

function. Then  f  is an uncertain variable such 

that 

 

        1f B f B      (13) 

for any Borel set B  within n . 

 

Now, we are ready to investigate statistical 

decision theory and extend its principles to 

uncertainty decision theory because we have 

adequate self-contained materials to understand the 

further explorations. 

 

3. Statistical decision theory 
 

Statistical decision theory is established on the 

axiomatic foundation of probability measure, see 

[4] and [8]. The developments can be sourced in 

[2] and [3]. A measure theoretical decision theory 

is stated below using well-known results.  

 

3.1 Three elements of statistical decision 
 

The three elements of statistical decision theory 

are: the states of the nature, the action space, and 

the loss in elementary statistical course. At the 

measure theoretical level, in order to simplify the 

mechanism underlying statistical decision, we use 

“sample space” instead of “states of nature”. Note 

here the term “statistical decision” implies that a 

decision is made by observation-based statistical 

analysis. Without data and the distribution 

underlying the data, there is nothing. While both 

“sample space and distributional family” and 

“states of nature” may share the same meanings, 

the former is more comprehensive and 

characteristic-exposing and the latter is more 
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intuitive. In discussing statistical decision theory 

we use “sample space and distributional family” to  

emphasize the observational and data oriented 

statistical nature of the set for specifying a decision 

problem.  

 

(1) Sample space and distributional family. In 

measure theoretical language, every concrete value 

of X , denoted as x , is called a sample value. The 

set of all possible sample values contribute to a 

sample space, denoted as  ,x x XX= . It is 

necessary to emphasize that the specification of 

X only requires X contains all the possible values 

of X , but it is not required that X  must admit all 

values in X . For example, though X may take 

non-negative real values, i.e.,  0,X    we 

may nonetheless introduce the sample space as 

 ,   X . This property may provide 

great conveniences in mathematical treatments 

later. Furthermore, a  -algebra (field) is specified 

on X , denoted as  B X . In statistical inferences, 

in specifying sample space, it is necessary to 

specify both X and  B X , i.e., the measurable 

space   ,X B X . Thus, in measure theoretical 

treatments, it is often the practice to regard the 

measurable space   ,X B X  as a sample space, 

instead of simplyX as in elemental statistics. The 

most commonly used sample space X  is the n-

dimensional Euclidean space n , while  B X  is 

the  -algebra of the Borel sets in n , or X  is a 

subset of the n-dimensional Euclidean space n , 

while  B X  is the  -algebra of the Borel sets of 

X .  Often there is no rigorous distinction between 

these two forms. Without special claims, when 

using      , ,n nX B X B , the later cases 

are covered.   ,n nB  is called the Euclidean 

sample space.  

 

On the  -algebra  B X , a family of probability 

measures  ,P   is defined, where  is called 

a parameter space, and in many 

situations, m . The distribution of X  is one of 

the members in the distributional 

family ,P   , i.e., there exists a 0  , such 

that the distribution of X  is 
0

P  but the value of 
0  

is unknown. Determining a value of 
0  , i.e., the 

specific distribution for X from the distributional 

family  ,P   is precisely the object of the 

statistical inference.  

 

The sample space and distributional family 

together determine the probability mechanism of 

the observations (i.e., sample values) from the 

population X . This pair is often written in the form 

of    , , ,P  X B X or alternatively, we say 

that the sample space of X  is   ,X B X  with 

distributional family  ,P   . 

Recall that  , ,P A  is called a probability space, 

therefore, it is important to bring the family of the 

probability spaces    , , ,P  X B X into the 

decision process since the selection of  is the 

basic implicit task.  

 

(2) Decision space. Statistical decision making (or 

inference), whether it takes the form of point 

estimation, or interval estimation, or hypothesis 

testing, is actually decision making based on the 

sample information (statistics). The set of all 

possible decision outcomes constitutes of a 

decision space, denoted by D . For the 

requirements of the measure theoretical 

developments, a  -algebra on D is necessary, 

denoted by  B D . Thus   ,D B D is called as a 

decision space. 

 

(3) Loss function. Whether a decision is bad or 

good, there must be a platform for comparison. For 

given probability distributional family 

  , , ,P  XX B  and the decision space D , we 

introduce a loss function associated with a specific 

decision d , d D , for the justification of decision 

merit. 

 

Definition 3.1. Let the parameter space be   and 

the decision space be   ,D B D . Any function 

defined on the product space D  is a loss 

function, denoted as  ,L d ,  if it is satisfies the 

following two conditions: 

(a)  0 ,L d    for any   and any d D ; 

(b) for any fixed   ,  ,L d  as function of d is 

 B D -measurable. 

The specification of loss sets up the criterion for 

decision choices, namely control of loss. 

 

3.2 Decision function 
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Having the descriptions of the three basic elements 

of statistical decision problem, we note that for any 

concrete problem, decision making aims to select a 

good decision d  in D , which depends upon the 

value of  loss function  ,L d . If   is given, the 

problem is easily settled. Given a value of , the 

distribution of X , P  , is known. If   is not given, 

it is necessary to utilize the information of the 

observational data and the underlying distribution 

of X  contained in the sample values x  (to infer the 

value ) in order to support the decision maker to 

make the choice.  

Therefore, the task of a statistical decision is just to 

establish a function  x  called a statistical 

decision function, defined on the sample space 

  ,X B X  and taking values on decision space 

  ,D B D  such that when a sample value x  is 

available, the value of the decision  x  will be 

determined.   

 

Definition 3.2. (Non-randomized statistical 

decision function) Let the sample space be 

  ,X B X  and the decision space be   ,D B D . 

Any measurable transformation  x  defined on 

X  and taking values on D is termed a non-

randomized statistical decision function.  

For any individual decision problem, there are 

many possible decision functions available. It is 

necessary to introduce a numerical index, the risk 

function, to reflect the quality of decision function 

 x .  

 

Definition 3.3. (Risk function) Suppose that the 

sample space and distributional family is given by 

  , , PX B X ,   , the decision space is 

  ,D B D , the loss function is  ,L d , and  x  

is a decision function. A function of , called the 

risk function denoted as  ,R    is defined  with 

respect to a decision function  , as 

   
    

    

, E ,

, ,   

R L X

L x dP x





   

  

   

 X
 (14) 

In other words, a risk function is the average loss if 

the decision  x  is taken for whatever the 

random value x  is observed, when the true 

parameter   is given (or assumed). It is obvious 

that the lesser the risk, the better the decision. 

 

Definition 3.4. (Randomized statistical decision 

function) Let the sample space be   ,X B X  and 

the decision space be   ,D B D . A function 

defined on the space  X B D ,  ,x D , is a 

randomized statistical decision function, if 

(a) for any fixed D DB ,  ,x D  as the function 

of x  is  B X -measurable; 

(b) for any fixed xX ,  ,x D  as the function of 

D is  a probability measure on  B D . 

In adopting a randomized statistical decision 

function  , the procedure for obtaining a decision 

d is as follows: first, obtain a random sample x  by 

observing the population X , then in terms of  , 

obtain the probability measure  ,x D  on  B D , 

and finally, in terms of the probability measure 

 ,x D , select a decision d from the decision 

space D . It is obvious that the previously defined 

non randomized statistical decision function is a 

special case of the randomized statistical decision 

function defined here, i.e., for any xX , 

probability distribution  ,x D  is concentrated at 

a point in D  as the function of D (Clearly this 

point is partially determined by x, i.e.,  x  in 

Definition 3.2.) 

One might query the significance of introducing 

such a very abstract and seemingly unnatural 

concept. At this stage, we simply stress that the 

concept will bring certain theoretical conveniences.  

 

The risk function of a randomized statistical 

decision function is described as follows. Let the 

sample space and the distributional family be 

   , , ,P  X B X , decision space be 

  ,D B D , and the loss function  be  ,L d . In 

order to calculate the risk function  ,R    for the 

randomized statistical decision function we set 

 ,x D  . It is easy to establish that given the 

sample x , the conditional risk of   is 

        , | , ,R x L x d      X  (15) 

where   is the moving point in D . It is necessary 

to note that  

   
     

   

, | , ,

, ,

R x L x d

dP L x d

     

   



 
 



 

X

X D

 (16) 
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In order to make the definition effective, it is 

necessary to verify: the integrals in (2) and (3) are 

meaningful. Note that the functions involved are 

all nonnegative. Hence once the measurability of 

the functions is confirmed, the conclusion is 

reached.  ,L    as a function of  is  B D -

measurable. Now assuming the integral in (2) to be 

meaningful, then the integral in (3) must be 

meaningful. This confirmation arises from showing 

that  , |R x   as a  function of x , is  B X  -

measurable. In other words, for any nonnegative 

 B D -measurable function  f  , the function 

        ,x f x d    D  (17) 

must be  B X -measurable. This property can be 

shown by the standard measure theoretical 

approach: start with indicator 

function    Df    ,  DB D , then a simple 

function    
1

,
i

n

D

i

f   


  iD B D , and 

finally an arbitrary nonnegative function  f  , 

which can be approached by limiting process by 

specifying a sequence of nonnegative simple 

functions   nf  .  

 

4. Elements of uncertainty decision problem 
  

Now, with the descriptions of the statistical 

decision theory, we may attempt to discuss the 

construction of a general uncertainty decision 

theory in a comparable manner. 

It is necessary to point out the three components, 

i.e., the state, action, and loss in the statistical 

decision theory, are still the essential elements in 

the new general uncertainty decision theory. (Note, 

the term for the first element, “state” is used here). 

However, the connotations inherent in the three 

elements are not always the same as in the 

statistical approach. Let us examine element by 

element. 

Firstly, in statistical decision theory, the state, 

termed “state of nature” (i.e., sample space and 

distributional family), is regarded as objectively in 

existence, at least in some consensus sense, while 

in any general uncertainty environments, the state 

may include subjective judgmental or even 

phenomenological events or factors. For example, 

top decision makers may include company’s 

middle managements’ or engineers possible cover-

up behaviour as one of the “state” elements, which 

need not be observable and non-repeatable events. 

(Such  possible information may sound dirty, 

spurious or problematic, and the decision makers 

might never wish to release this approach to the 

employees or the public). Note here the conceptual 

interpretations of state acquire when involving the 

decision environments, i.e., “reality” ahead of the 

decision makers, possible virtual actions, and 

virtual loss. The differentiation between the “state 

of nature” in the statistical decision theory and the 

“state” in the uncertainty decision theory is critical. 

The former is under the frequentist statistician’s 

“reality” inferences, more or less reflecting the 

“truth”, while the latter is a mixture of subjective 

and objective reflections.  

Secondly, the connotations of “action” in the 

statistical decision theory and that in the 

uncertainty decision theory can be discerned. The 

action in the statistical decision theory is the 

possible reaction and treatment against the state 

event. The state element is the root cause and 

accordingly, the action is selected against the 

cause. It is an if-then logic and thus a many to one 

mapping from the state space onto action space 

(point-wise).  

While the “action” in the uncertainty decision 

theory is not necessarily a one-to-one mapping 

consequence because particular “states” under 

consideration may be of artificial, or personal 

experience, or a phenomenological nature. A 

director with rich experience may not be afraid in 

facing a crisis and  s/he may even delicately utilize 

the crisis to create more development chances 

instead. The state space in an experienced 

director’s mind is likely to be much enlarged by 

inclusion of  many “states” due to specific 

understanding of crisis, in contrast with an  

inexperienced junior manager, Therefore, the 

action space is virtual, in which some elements are 

of a precautionary nature and do not correspond to 

any specific state element. The mapping is of 

multiple states to multiple action nature.  However, 

the inclusion of virtual action elements is 

extremely important, because the top decision 

maker does not need to deal with routine decisions 

of day-to-day operations but with the extreme 

event or the most important event decision.    

Thirdly, the loss in both decision theories is the 

same.   However, the social loss and environmental 

loss occupy more and more concern from the 

public, NGO and the governmental agencies as 

well. In the new uncertainty decision theory, safety 

factor state, health factor state, and environmental 

factor state should be automatically assigned 

uncertain measure grades because of their intrinsic 

features. 

According to statistical decision theory, the 

decision is made in terms of observational data, 

denoted as z , which is described by an probability 
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distribution  ;F z  . Based on data z (i.e., 

 ;F z  ), a decision is actually a mapping from 

data space  into action space . In other words,   

 

   :a   (18) 

which can be expressed by 

    a d z  (19) 

 

The action taken is random because the 

observational data to which decision rule is applied 

are random. Consequently, the loss function 

  ,l d z is random in statistical decision theory. 

Therefore,     , , ,P  X B X ,  the 

probability distribution family is constituted of the 

elementary mechanism underlying the statistical 

decision processes. 

Similarly, in section two, where the uncertainty 

distribution theory is introduced, we stress that 

   , , ,  B , the uncertainty 

distribution family is constituted of the 

fundamental mechanism underlying the uncertainty 

decision processes. Let us explore what an 

uncertainty distribution may look like via a 

detailed example.  

Example 4.1. Let be an uncertain variable, which 

takes values on  0,0 ,1,1 ,2,2 ,3,3 ,4      with 

the uncertainty distribution: 

   

0 0

0.25 0

0.2 0.25 0 1

0.575 1

0.125 0.45 1 2

0.77 2

0.07 0.63 2 3

0.85 3

0.09 0.59 3 4

1.0 4

z

z

z z

z

z z
z

z

z z

z

z z

z








   



   

  


   



   




 (20) 

 

which implies 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

1

1

2

2

2

3

3

3

4

4

0 0.25,

0 0.05,

1 0 0.15,  

1 0.125,  

1 0 0.015,

2 0 0.11,  

2 0.07,  

2 0 0.03,

3 0 0.04,  

3 0.01,  

3 0 0.08,  

4 0 0.02,

4 0 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

















  

   

   

  

   

   

  

   

   

  

   

   

    05

 

(21) 

 

Remark 4.2. It is easily seen that the uncertain 

distribution defined in Example 4.1 is a function 

with finite jumps, where lim lim
i i

i i
z z z z

c c  
 

    

and ,  i i i i iz c c c c      , satisfying Theorem 

2.7, although  iz c , 0,1, ,4i   are so-called 

removable points in calculus theory. It can be 

further verified that the uncertain distribution  is 

neither left continuous nor right-continuous.  in 

this example gives an elementary form of an 

uncertain distribution. 

 

Definition 4.3. (Essential Form of an Uncertain 

Distribution) Let  be an uncertain variable with 

essential form, which takes its values from an 

ascending ordered domain set  0 1, , , nc c c  

with the uncertain distribution  defined by  

   

   

     

     

   

0 0

1 1 1 1 1 1

0,  

,  ,  ,

,

,  ,  ,

,

, 1.00

i i i i i i

n n n

c c

c c c

c c c

c c



  

  



 

 



   

       

       

    

 
(22) 

such that ,  1,2, ,i i i i n      . Furthermore, 

it requires  

   0, , 1,2, ,i i i ic i n         .  

 

Theorem 4.4. Let   be an uncertain variable with 

the essential form, which takes values from 

ascending ordered domain set  0 1, , , nc c c  

with the uncertain distribution. Then   satisfies 

the following necessary and sufficient conditions: 

(i)  

      0 0 0c c     (23) 

(ii) For 1,2, , 1i n  , 
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,

,

i i i

i i i

i i i

c c

c c

c c

 

 

 





    

   

    

 (24) 

  (iii)  

   

   

    

   

,

,

1.00

n n n

n n n

n n

c c

c c

c c

 

 



    

   

   

 (25) 

  (iv) The uncertain measure of singleton  ic  

   

 

 

 

0 ,

,

0 ,

i i

i i

i i

c

c

c

 

 

 





  

 

  

 (26) 

such that  
0

1
n

i i ii
   

   . 

 

Definition 4.5. If an uncertainty distribution takes 

the form 

    

0

1 1

1 1 2

2 2

1

1 1

0

1.0

d

i i

i i i

i i

m

z c

z c

c z c

z c

z
z c

c z c

z c

z c















 

 






  





  


  








 (27) 

where 10 1i i i       , then it is a discrete 

uncertain distribution. 

 

Theorem 4.6. The expectation of a discrete 

uncertainty distribution  d , denoted as   , is 

given by 

    
0

n

i i

i

w c



   (28) 

where   

   

 

 

 

 

0

0

0

0

max , | 0.5

   max , | 0.5

   max , | 0.5

   max , | 0.5

i j j j i
j n

j j j i
j n

j j j i
j n

j j j i
j n

w c c

c c

c c

c c

 

 

 

 


 


 


 


 

  

  

  

  

 
(29) 

0,1,2, ,i m . 

Proof: The proof of Theorem 6.4 is just the 

application of  Liu’s [6] definition of uncertain 

expectation to a discrete uncertain variable with 

neither left-continuity nor right-continuity: 

        
0

0

s ds s ds  




      . (30) 

 

Example 4.7.  Calculate the expectation of the 

discrete uncertain variable defined by  

    

0 0

0.25 0

0.45 0 1

0.575 1

0.7 1 2

0.77 2

0.84 2 3

0.85 3

0.95 3 4

1.0 4

z

z

z

z

z
z

z

z

z

z

z








  



  

  


  



  




 (31) 

 

Let us calculate the weight ,  0,1,2,3,4iw i  . Note 

that the uncertain measure grades can be written  

   

 

 

 

 

 

 

 

 

 

0

0

1

1

2

2

3

3

4

0 0.25,

0 0.20,

1 0.125,  

1 0 0.125,

2 0.07,  

2 0 0.07,

3 0.01,  

3 0.10,  

4 0 0.05

 

 

 

 

 

 

 

 

 









  

   

  

   

  

   

  

   

   

 
(32) 

Then we can calculate the weights: 

   

   

   

0
0 1

1 1

max | 0 0.5 max | 0 0.5

   max , | 0 0.5 max , | 0 0.5

0.25 0.00 0.20 0.125 0.325

j j
j n j n

j j j j
j n j n

w j j

j j

 

   

   

 
   

     

     

    

  

   

   

   

1
0 0

0 0

max , | 1 0.5 max , | 1 0.5

   max , | 1 0.5 max , | 1 0.5

0.25 0.20 0.125 0.125 0.05

j j j j
j n j n

j j j j
j n j n

w j j

j j

   

   

 
   

 
   

     

     

    

  

   
   

   

2
0 0

0 0

max , , | 2 0.5 max , , | 2 0.5

   max , , | 2 0.5 max , , | 2 0.5

0.25 0.25 0.10 0.10 0.00

j j j j j j
j n j n

j j j j j j
j n j n

w j j

j j

     

     

   
   

   
   

     

     

    

  

   
   

   

3
0 0

0 0

max , , | 3 0.5 max , , | 3 0.5

   max , , | 3 0.5 max , , | 3 0.5

0.25 0.25 0.10 0.10 0.00

j j j j j j
j n j n

j j j j j j
j n j n

w j j

j j

     

     

   
   

   
   

     

     

    

  

and 

   
   

   

4
0 0

0 0

max , , | 4 0.5 max , , | 4 0.5

   max , , | 4 0.5 max , , | 4 0.5

0.25 0.25 0.05 0.00 0.05

j j j j j j
j n j n

j j j j j j
j n j n

w j j

j j

     

     

   
   

   
   

     

     

    

  

Hence the expected value of the uncertain variable 

is 
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     0.25 0 0.05 1 0.00 2

       0.00 3 0.05 4 0.25

      

    
  

 

Remark 4.8.  Recall that in statistical decision, the 

index, risk, is an expectation involving a 

distribution function. In other words, the decision 

element - loss function is a random quantity in 

statistical decision theory, or it is an uncertain 

quantity in uncertainty decision theory. It is also 

well-known fact that we cannot compare two 

random quantities directly until the statistical 

experiment is finished and the outcomes are 

obtained we do not know their values. 

Furthermore, because each individual outcome 

(realization) of a random variable (quantity) is 

associated with a probability, simply comparing 

the values of two random quantities will let 

decision-making miss their associated probability 

grades. Therefore, statistical decision is commonly 

made on the weighted average sense, i.e., 

expectation sense. The risk concept is just 

reflecting such a feature. Similarly, it is fair to say 

the uncertainty decision is also made using 

expectation of an uncertainty distribution. 

  The fact that the Toyota management was aware 

of faulty car component problems, but did not 

address potential impacts of social risk and 

environmental awareness, may reveal that the their 

description of the state space is questionable. In 

other words, the state space   used in the Toyota 

decision might include the faulty parts sub-space 

f  , but the associated measure grades 

assigned to the states in f were so tiny so that the 

decision function specification essentially 

generates near-null loss, and hence decisions 

unaffected by the parts are preferable to the 

management’s thinking. 

According to Liu [6], the uncertain distribution 

function on the state space is a prior 

distribution,  p  , which may or may not be 

updateable by the information in data form. Bayes 

theorem (in probability) may also provide a 

updating structure for the state distribution, whose 

result is the called posterior uncertain distribution 

on the state  |p z .  

A fundamental issue here is the uncertain prior 

distribution specification, particularly, the 

uncertain measure grades in f .    

 

5. A discrete uncertainty decision  
 

Definition 5.1. An uncertain decision is a selection, 

which minimizes the loss function  ,l a or regret 

function       , , min ,
a

r a l a l a  


    of an 

action a from action space for given state  in 

the state space  .  

 

 Definition 5.2. The expected value of the loss with 

respect to the distribution of uncertain data z .  

 

   , E ,R d l d z                                     (33) 

 

is called the risk function. 

 

Remark 5.3. The distribution of uncertain data 

z depends on state  , because the dependence of 

 ,R d  on  enters explicitly from   ,l a and 

also through the state   in the distribution 

function  ;z  for z . 

 

Example 5.4. Two quality states  1 2,   , 

where 

1 : Liu’s [6] uncertain quality state, 2 , Gaussian 

quality state are assumed. 

The uncertain variable  is discrete variable taking 

values on  0,0 ,1,1 ,2,2 ,3,3 ,4     . Then 

 ;z  , the uncertain distribution given 1  is: 

    1

0 0

0.71 0

0.71964 0 1

0.93964 1

0.94822 1 2
|

0.99122 2

0.99138 2 3

0.99938 3

0.99998 3 4

1.0 4

z

z

z

z

z
z

z

z

z

z

z

 






  



  

  


  



  




 (34) 

Note that the uncertain measure grades given 1  

are  

   

 

 

 

 

 

 

 

 

 

0

0

1

1

2

2

3

3

4

0 0.71,

0 0.00964,

1 0.22,  

1 0 0.00858,

2 0.04,  

2 0 0.0032,

3 0.008,  

3 0.0006,  

4 0.00002

 

 

 

 

 

 

 

 

 









  

   

  

   

  

   

  

   

  

 
(35) 
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The uncertain distribution  ;z  given 
2  is: 

    2

0 0

0.68 0

0.68268 0 1

0.95268 1

0.9545 1 2
|

0.9965 2

0.9973 2 3

0.9993 3

0.99995 3 4

1.0 4

z

z

z

z

z
z

z

z

z

z

z

 






  



  

  


  



  




 (36) 

Note that the uncertain measure grades are 

   

 

 

 

 

 

 

 

 

 

0

0

1

1

2

2

3

3

4

0 0.68,

0 0.00268,

1 0.27,  

1 0 0.00182,

2 0.042,  

2 0 0.0008,

3 0.002,  

3 0.00065,  

4 0.00005

 

 

 

 

 

 

 

 

 









  

   

  

   

  

   

  

   

  

 
(37) 

 

The loss is defined in the Table 1. The uncertain 

distribution is defined by Table 2. 
 

Table 1.  A loss function in tabular form 
 

 ,l a  1  2  

1a  1.2 4.5 

2a  3.5 1.5 

 
 

Table 2.  Data uncertain distribution 
 

 Pr |i jZ z   1  2  

1 0z    0.71 0.68 

2 0z     0.00964 0.00268 

3 1z    0.22 0.27 

4 1z     0.00858 0.00182 

5 2z    0.004 0.042 

6 2z     0.0032 0.0008 

7 3z    0.008 0.002 

8 3z     0.0006 0.00065 

9 4z    0.00002 0.00005 

 

Then the decision function will have 

9 2 18  elements since there are 2 actions and 9 

observations : 

 

Table 3.  Uncertain decision function  a d z  

 d z  1d  
2d  

3d  
4d  

5d  
6d  

7d  
8d  

9d  

1z  
1a  

1a  
1a  

1a  
1a  

1a  
1a  

1a  
2a  

2z  
1a  

1a  
1a  

1a  
1a  

1a  
1a  

2a  
2a  

3z  
1a  

1a  
1a  

1a  
1a  

1a  
2a  

2a  
2a  

4z  
1a  

1a  
1a  

1a  
1a  

2a  
2a  

2a  
2a  

5z  
1a  

1a  
1a  

1a  
2a  

2a  
2a  

2a  
2a  

6z  
1a  

1a  
1a  

2a  
2a  

2a  
2a  

2a  
2a  

7z  
1a  

1a  
2a  

2a  
2a  

2a  
2a  

2a  
2a  

8z  1a  
2a  

2a  
2a  

2a  
2a  

2a  
2a  

2a  

9z  
2a  

2a  
2a  

2a  
2a  

2a  
2a  

2a  
2a  

where the decision space  1 2 9, , ,d d d . 

 

Table 4.  Risk function , E ,R d l d z  

 ,R d  1  
2  

1d  1.200066 3.4999 

2d  1.202046 3.4986 

3d  1.228446 3.4946 

4d  1.228974 3.493 

5d  1.370874 3.40885 

6d  1.68108 3.40536 

7d  2.125188 2.88036 

8d  2.157 2.86 

9d  4.5 1.5 

 

To demonstrate the calculation of entries in Table 

4, we evaluate , , 1,2;  1,2, ,9i jR d i j , 

   

1 1

1 1 1 1 1 1 2 1

1 1 3 1 1 1 4 1

1 1 5 1 1 1 6 1

1 1 7 1 1 1 8 1

1 2 9 1

,

, | , |

, | , |

, | , |

, | , |

, |

1 0.99998 4 0.00002 1.00006

R d

l a p z z l a p z z

l a p z z l a p z z

l a p z z l a p z z

l a p z z l a p z z

l a p z z
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1 2

1 1 1 1 1 1 2 1

1 1 3 1 1 1 4 1

1 1 5 1 1 1 6 1

1 1 7 1 1 2 8 1

1 2 9 1

,

, | , |

, | , |

, | , |

, | , |

, |

1 0.99938 4 0.00062 1.00186

R d

l a p z z l a p z z

l a p z z l a p z z

l a p z z l a p z z

l a p z z l a p z z

l a p z z

 
 

 

With the specifications of risk function, a further 

criterion for selecting a decision must be defined. 

As an example, we employ the minimax principle. 

The first step is to maximise the risk with respect 

to state space, i.e., 

 

     max ,Md R d


  (32) 

 

And the second step is to find the minimax 

decision rule which minimizes Md  

        min min max ,mM M

d d
d d R d


   (33) 

 

Example 5.5. Minimax decision rule for Example 

5.4. 

 

Table 5.  Minimax decision rule mMd search 

 
1  2   M d  

1d  1.200066 3.4999 3.4999 

2d  1.202046 3.4986 3.4986 

3d  1.228446 3.4946 3.4946 

4d  1.228974 3.493 3.493 

5d  1.370874 3.40885 3.40885 

6d  1.68108 3.40536 3.40536 

7d  2.125188 2.88036 2.88036 

8d  2.157 2.86 2.86 

9d  4.5 1.5 4.5 

mMd  2.86 

 

The development of Section 5 reveals that in a 

discrete uncertainty decision, the procedure for the 

uncertainty decision is similar to that for statistical 

decision. The fundamental difference lies in the 

connotation of the “state” and underlying 

uncertainty distribution as discussed in Section 4.  

 

6. A continuous uncertain decision 
 

In Section 5 we explored the uncertain decision 

given discrete state space, action space and discrete 

loss function environments. Now, we investigate 

the decision problem under a continuous 

uncertainty environment. 

Recall that Definition 4.3 states the essential form 

of the uncertainty distribution. It is neither left-

continuous nor right-continuous and its distribution 

function has finite jumps and “removable” values 

at jump points. If the distribution function is 

continuous everywhere, i.e., there is no jump and 

no removable point in its domain, it is a continuous 

uncertainty distribution.  

 

Peng and Iwamura [7] give an uncertain variable 

 x x  defined on the uncertain space 

 , , A where 

   

0                             if 

        if  is upper bounded

0.5         if  and  are both upper bounded

1             if  is upper bounded

1                                if 

c

c

A

c A

A A A

c A

A

 (34) 

 

Then the uncertain distribution for  is 

  ,  0 0.5x c c    . 

Another continuous uncertainty distribution 

example is Liu’s [6] uncertain normal distribution 

    
 

3

1
; , ,

1
z e

z e z

e






 

  



 (35) 

 

Let us consider the uncertain decision problem for 

a given continuous distribution. 

Assume state space  , and action space 

 , and the loss function defined by 

       
2

,l a w a     (35) 

i.e., a quadratic loss function is assumed. 

Definition 6.1. (Uncertain Bayes loss) Given a 

continuous state space  , the uncertain variable 

  is defined on uncertain space   , , B , 

where   is an uncertain measure. The uncertain 

distribution    is defined on   , B ). 

Then we seek the average of loss with respect to 

state space for a given action a . (Note the 

action space is continuous too.) The quantity 

    

          E , ,B a l a l a d  


        (36) 

is called as the uncertain Bayes loss for a given 

action a . 

 

Definition 6.2. (Uncertain Bayes risk) The Bayes 

risk is 
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         E , ,B d l d z l d z d  


       (37) 

 

Definition 6.3. (Uncertain Bayes rule) A Bayes 

decision rule, denoted as 
Bd  is a rule such that the 

Bayes risk is minimized, i.e.,  

       minB

d
B d B d


  (38) 

 

Example 6.4.  Given a continuous state space 

 , the uncertain variable   is defined on 

uncertain space   , ,B , where   is 

properly defined. The uncertain distribution is 

    
 

 

0   

2

2

2

1  

 

 
  

 


  
  

 

 





  


  

   
 




 (39) 

 

 Then we find the average of loss with respect to 

state space for a given action a , as the  

uncertain Bayes loss:  

   

        
2

E ,B a l a w a d   


         (40) 

Set   0w w  , a constant. The uncertain Bayes 

loss is 

   

 
 

 
 

 

      

      

  

  

    

2 20 0

2 20

2 20

2 2 20

2 2 20

2 2 2 20

2 2

6

6

3 3
6

3 3
6

6 3 2 2
6

w w
B a a d a d

w
a a a a

w
a a a a

w
a a

w
a a

w
a a

 

 

   
   

   

   

   

   

     

   
 

       
 

       
 

    

    

      

 

 

(41) 

 

With appropriate specification of decision function 

in term of data, the uncertain Bayesian decision 

analysis can be formulated. 

 

Liu [6] states his maximum uncertain principle, 

(abbreviated as MUP): “for any event, if there are 

multiple reasonable values that an uncertain 

measure may take, then the value as close as to 0.5 

as possible is assigned to the event”. 

Definition 6.5. Let  | x  denote the regular 

conditional distribution of  , given X x . If 

 ,v   , where  is a  -finite measure 

on XB , and define    ,f x dv x d  , then 

for B  B , 

    

   

   

   

   

   

   

   

   

, ,
0.5 if 0.5

, ,

, ,
| 1 if 0.5

, ,

0.5        othervise

c c

B B

B B

f x d f x d

f x d f x d

f x d f x d
B x

f x d f x d

     

     

     


     

 

 


  





  







 

 

 

 
 (42) 

is a Bayes measure under the Maximum 

Uncertainty Principle. 

 

Theorem 6.6. The regular conditional distribution 

of  , given X x ,  | x  , is called the MUP 

posterior distribution of    , after obtaining the 

sample x . 

      | |x x  


     (43) 

where  | x  is given by Definition 6.5. 

 

Remark 6.7. Once the MUP posterior density is 

specified, the posterior mean and variance can be 

calculated:  

    E |d x 




       (44) 

 

and 

   

       
2 2

V =E |d x 




                  (45) 

respectively. 

 

Example 6.8. : Let the uncertain prior be 

    
 

 

0        if 

  if 
2

2
if 

2

1            otherwise

a

a
a b

b a

c b
b c

c b






 








  


 

   
 



 
(46) 

hence  

    

 

 

1
if 

2

1
if 

2

0    if  or  

a b
b a

d
b c

d c b

a c



 




 


  




  


  



 
(47) 
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The sample of size n is drawn i.i.d. from a normal 

family 2

0,N , where the variance 2

0
 is given. 

The sample is 1 2, , , nx x x x .     Then  

   
1 0

n
i

i

dP x

dx

 




 
  

 
  (48) 

where 

    
2

2
1

2

y

y e




  (49) 

Note that 

    
2

2
1 10 00

1
exp

22

n n
ii

i i

xx 


  

  
   
    

   (50) 

Since  

   
   

 

2 2 2

1

2

2 2

2

2

n

i n

i

n

n

x n x Q

x
n x Q

  





   

 
     

 


 

 

where  

   2 2

1 1

1
,  

n n

n i i

i i

x x Q x
n  

    (51) 

thus 

         22 22
0

22

0

1

2

nn

n

Q xx ndP
e e

dx

 



   
   
 

 (52) 

The absolute distribution for x  is 

   
 

  

 

 

22 2

0 0

0 0

( )

1

2

1

2

nQ x

n n

n n

p x p x e

b x a x

b a

c x b x

c b

 

 

 

     
            

     
            

 

(53) 

The posterior density of given 1 2, , , nx x x x  

is 

   

 

   

   

0

0

1
if  

2

1
| if  

2

0                              otherwise

n

n

x
a b

b a p x n

x
x b c

c b p x n


 




   







  
      


 

       





 

(54) 

 

Example 6.9. Suppose that a random sample of size 

n  is taken from the electronic system lifetime with 

density 

   
1

i n

n
t Tn

i

dP
e e

dt

    



   (55) 

where 

   
1

n

n i

i

T t


   

Let us further assume the uncertain prior density 

    

 

 

1
if 

2

1
if 

2

0    if  or  

a b
b a

d
b c

d c b

a c



 




 


  




  


  



 
 

Note  

   
 

 
 

 
 

( )

1

2

1

2

n n

n n

bT aTn n

cT bTn n

p t p t

b e a e
b a

c e b e
c b



 

 



 


 


 

(56) 

It is easy to obtain that the posterior density is 

 

 

   

   

1
if 

2

1
| if 

2

0    if 0  or  

n

n

Tn

Tn

e a b
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In case of uncertain observations are adequately 

large, an MUP asymptotic Bayesian analysis can 

be carried forward immediately by noting the 

asymptotic normal distribution  ,VN          .  

 

7. Conclusion 

In this paper, we review the newly proposed 

axiomatic uncertain measure theory and further 

introduce a measure theoretic treatment of 

uncertainty decision theory. We further explore the 

characteristics of the uncertainty decision theory. 

In terms of our investigations, we emphasize the 

fundamental mechanism of uncertainty 

distributions and the impacts on the general 

uncertainty decision processes. In the discrete 

uncertainty decision example, the characteristic of 

uncertainty distribution is intrinsic and unique 

because the probabilistic discrete distributions 

never have such features. We develop the MUP 

Bayes formula in continuous case.  

Our efforts in this paper reveal that under general 

uncertainty, the decision may adopt a framework 

similar to statistical decision theoretic framework. 

However, the sub-  -additive characteristic 

imposes intrinsic and unique features to the 

uncertainty distribution and its expectation, and 

thus the general uncertainty decision making is 

more computational demanding. 
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