Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study aimed to prepare hydrogel based on polyvinyl alcohol (PVA) and gelatin (Ge) and characterization of PVA/Ge hydrogel for their potential use as a sustained drug delivery system. Polyvinyl Alcohol (PVA) and-Gelatin (Ge) were cross-linked using glutaraldehyde (GA) as a crosslinking agent and hydrochloric acid (HCl) as a catalyst. Different feed polymer ratio and crosslinking agent concentration were used to prepare a series of PVA/Ge hydrogels. The obtained PVA/Ge hydrogels were investigated for dynamic and equilibrium swelling studies. The effect of polymers ratio, degree of crosslinking and pH of the medium on swelling of PVA/Ge hydrogels was investigated. Furthermore, the values of diffusion coeficient (D), volume fraction, polymer-solvent interaction parameter, molecular weight between crosslink and crosslink density were calculated. For swelling studies, 0.05M USP phosphate buffer solutions of different pH (1.2, 5.5, 6.5 and 7.5) were used. For the drug release study, ciprofloxacin HCl was loaded into selected samples as a model drug. The release of drug from these samples was performed for 12 hours in USP phosphate buffers of pH 1.2, 5.5 and 7.5. The release data from these samples were fitted into various kinetic models like zero order, first order, Higuchi and Peppas models to investigate the release mechanism. It was found that by varying the composition of PVA/Ge hydrogel and GA concentration, a significant difference was observed in drug release kinetics. FTIR spectroscopy and X-ray diffraction were used for the characterization of hydrogels. PVA/Ge hydrogel showed sustained release of the model drug at various pH values suggesting its potential use as a sustained drug delivery system.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
56--65
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wz.
Twórcy
autor
- Department of Pharmacy Bahauddin Zakariya University Multan, Punjab, Pakistan
autor
- Department of Pharmacy Bahauddin Zakariya University Multan, Punjab, Pakistan
autor
- Department of Zoology, University of Malakand, Chakdara, 18800, Khyber Pakhtunkhwa, Pakistan
autor
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Khyber Pakhtunkhwa, Pakistan
autor
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad Pakistan
autor
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece
autor
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455,Riyadh 11451, Saudi Arabia
autor
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455,Riyadh 11451, Saudi Arabia
autor
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455,Riyadh 11451, Saudi Arabia
autor
- Ministry of Health, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
Bibliografia
- 1. Naveed, M., Bukhari, B., Aziz, T., Zaib, S., Mansoor, M.A., Khan, A.A., Shahzad, M., Dablool, A.S., Alruways, M.W., Almalki, A.A., Alamri, A.S. & Alhomrani, M. (2022). Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules, 27(13), 4226. DOI: 10.3390/molecules27134226.
- 2. Naveed, M., Batool, H., Rehman, S.U., Javed, A., Makh-doom, S.I., Aziz, T., Mohamed, A.A., Sameeh, M.Y., Alruways, M.W., Dablool, A.S., Almalki, A.A., Alamri, A.S., Alhomrani, M. (2022). Characterization and Evaluation of the Antioxidant, Antidiabetic, Anti-Inflammatory, and Cytotoxic Activities of Silver Nanoparticles Synthesized Using Brachychiton populneus Leaf Extract. Processes, 10(8), 1521. DOI: 10.3390/pr10081521
- 3. Burugapalli, K., Koul, V. & Dinda, A.K. (2004). Effect of composition of interpenetrating polymer network hydrogels based on poly (acrylic acid) and gelatin on tissue response: A quantitative in vivo study. Biomed. Mater. Res., 68, 210–218. DOI: 10.1002/jbm.a.10117.
- 4. Ranjha, N.M., Ayub, G., Naseem, S. & Ansari, M.T. (2010). Preparation, and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J. Mater. Med., 21, 2805–2816. DOI: 10.1007/s10856-010-4134-1.
- 5. Hamidi, M., Azadi, A. & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Adv. Drug. Del. Rev., 60, 1638–1649. DOI: 10.1016/j.addr.2008.08.002.
- 6. Dai, W.S. & Barbari, T.A. (1999). Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly (vinyl alcohol). J. Membr. Sci., 156, 67–79. DOI: 10.1016/S0376-7388(98)00330-5.
- 7. Hennink, W.E. & Nostrum, C.F.V. (2002). Noval crosslinking methods to design hydrogels. Adv. Drug. Del. Rev., 54, 13–36. DOI: 10.1016/S0169-409X(01)00240-X.
- 8. Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N. & Rubini, K. (2002). Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 23, (24), 4827–432. DOI:10.1016/s0142-9612(02)00235-1.
- 9. William, J.R. (2006). Pharmaceutical Necessities. Remington the Science and Practice of Pharmacy vol.1, 21sted, chap. 55, p 1074.
- 10. Kunal, P. & Banthia, A.K. (2007). Biomedical evaluation of polyvinyl alcohol-gelatin esterified hydrogel for wound dressing. Mater. Sci., 18, 1889–1894. DOI:10.1007/s10856-007-3061-2.
- 11. Sanlı, O., Ay, N. & Isıklan, N. (2007). Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads. Eur. J. Pharm. Biopharm., 65, 204–214. DOI: 10.1016/j.ejpb.2006.08.004.
- 12. Pawde, S.M. & Deshmukh, K. (2008). Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J. Appl. Polym. Sci., 109, 3431–3437. DOI: 10.1002/app.28454.
- 13. Yurong, L. & Luke, M.G. (2010). Thermal behavior, and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J. Mech. Behav. Biomed. Mater., 3, 203–209. DOI: 10.1016/j.jmbbm.2009.07.001.
- 14. Bajpai, A.K. & Rajesh, S. (2005). Preparation and characterization of biocompatible spongy cryogels of polyvinyl alcohol–gelatin and study of water sorption behavior. Polym. Int., 54, 1233–1242. DOI: 10.1002/pi.1813.
- 15. Young, K.M. & Byong, T.L. Fabrication of polyvinyl alcohol/gelatin nanofibers composites and evaluation of their material properties. J. Nanomater., (2011), 8, 213–218. DOI: 10.1002/jbm.b.31701.
- 16. Kunal, P. & Banthia, A.K. (2007). Preparation and characterization of polyvinyl alcohol–gelatin hydrogel membranes for biomedical applications. AAPS Pharm. Sci. Tech., 8, 21–24. DOI: 10.1208/pt080121.
- 17. Ranjha, N.M., Mudassir, J. & Sheikh, Z.Z. (2011). Synthesis and characterization of pH-sensitive pectin/acrylic acid hydrogels for verapamil release study. Iranian Polym. J. 20, 147–159. https://www.magiran.com/paper/829950?lang=en
- 18. Ranjha, N.M., Ayub, G. Naseem, S. & Ansari, M.T. (2010). Preparation, and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J. Mater. Sci. Mater. Med., 21, 2805–2816. DOI: 10.1007/s10856-010-4134-1.
- 19. Jeong, J.C., Lee, J. & Cho, K. (2003). Effects of crystalline microstructure on drug release behavior of poly (q-caprolac-tone) microspheres. J. Cont. Rel., 92, 249–258. DOI: 10.1016/S0168-3659(03)00367-5.
- 20. Leea,. S.C., Kang, S.W., Kima, C., Kwonb, I.C. & Jeongb, S.Y. (2000). Synthesis and characterization of amphiphilic poly (2-ethyl-2-oxazoline)/poly (1-caprolactone) alternating multi-block copolymers. Polym. Sci., 41, 7091–7097. DOI: 10.1016/s0168-3659(03)00367-5.
- 21. Yin, L., Fei, L., Cui, F., Tang, C. & Yin, C. (2007). Superporous hydrogels containing poly (acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 28, 1258–1266. DOI: 10.1016/j.biomaterials.2006.11.008.
- 22. Line, W.J. & Lu, CH. (2002). Characterization and permeation of microporous poly (caprolactone) films. J. Memb. Sci., 198, 109–118. DOI: 10.1016/S0376-7388(01)00652-4.
- 23. Jabbari, E. & Nozari, S. (2000). Swelling behaviour of acrylic acid hydrogels prepared gamma radiation crosslinking of polyacrylic acid in aqueous solution. Polym. J. 36, 2685–2692. DOI: 10.1016/S0014-3057(00)00044-6.
- 24. Britton, L.N., Ashman, R.B., Aminabhavi, T.M. & Cassidy, P.E. (1988). Prediction of Transport Properties of Permeants through Polymer Films. J. Chem. Educ., 365– 368. DOI:10.1021/ed065p368.
- 25. Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H. & Zhang, J. (2000). Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev. Biomed. Eng., 2, 9–29. DOI: 10.1146/annurev.bioeng.2.1.9.
- 26. Pourjavadi, A. & Barzegar, S. (2009). Smart Pectin based Superabsorbent Hydrogel as a Matrix for Ibubrofen as an Oral Non-steroidal Anti-inflammatory Drug Delivery. Starch/Strake, 61, 173–187. DOI: 10.1016/S0014-3057(00)00044-6.
- 27. Serraa, L., Nechc, J.D. & Peppas, N. (2006). Drug transport mechanisms and release kinetics from molecularly designed poly (acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27, 5440–5451. DOI: 10.1016/j.biomaterials.2006.06.011.
- 28. Najib, N. & Suleiman, M. (1985). The kinatics of drug release from ethyle cellulose solid dispersion. Drug. Del. Ind. Pharm., 11, 2169–2189. DOI: 10.3109/03639048509087779.
- 29. Desai, S.J., Singh, P., Simonelli, A.P. & Higuci, W.I. (1966). Investigation of factors influencing release of solid drug dispersed in wax matrics. Quantitative studies involving polyethylene plastic matrix. J. Pharm. Sci., 55, 1230–1234. DOI: 10.1002/jps.2600551113.
- 30. Higuchi, T. (1963). Mechanism of sustained action medication: Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 50, 1145–1149. DOI: 10.1002/jps.2600521210.
- 31. Peppas, N.A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv., 60, 110–111.
- 32. Korsmeyer, R.W., Gurny, R., Doelker, E.M., Buri, P., Peppas, N.A. (1983). Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm., 15, 25–35. DOI: 10.1016/0378-5173(83)90064-9.
- 33. Gunasekaran, S., Wang, T. & Chai, C. (2006). Swelling of pH-Sensitive Chitosan–Poly (vinyl alcohol) Hydrogels. J. Appl. Polym. Sci., 102, 4665–4671. DOI: 10.1002/app.24825.
- 34. Zhu, D., Jin, L., Wang, Y. & Ren, H. (2012). Swelling behavior of gelatin-based hydrogel cross-linked with microbial transglutaminase. J. aqeic. 63, 12–23.
- 35. Byun, H., Hong, B., Nam, S.Y. Ji W.R., Sang, B.L. & Go, Y.M. (2008). Swelling behavior and drug release of poly (vinyl alcohol) hydrogel cross-linked with poly (acrylic acid). Macromol. Res. 16, 189–193. DOI: 10.1007/BF03218851.
- 36. Bajpai, A.K. & Saini, R. (2005). Preparation and characterization of biocompatible spongy cryogels of poly(vinyl alcohol)–gelatin and study of water sorption behaviour. Polym. Int. 54, 1233–1242. DOI: 10.1007/s10856-006-6329-z.
- 37. Qiao, C., Cao, X. & Wang, F. (2012). Swelling Behavior Study of Physically Crosslinked Gelatin Hydrogels. Polym & Polym Composites. 20, 11 – 21. DOI: 10.1177/0967391112020001-210.
- 38. Hu, X., Ma, L., Wang, C. & Gao, C. (2009). Gelatin Hydrogel Prepared by Photo-initiated Polymerization and Loaded with TGF-b1 for Cartilage Tissue Engineering. Macromol. Biosci., 9, 1194–1201. DOI: 10.1002/mabi.200900275.
- 39. Parka, J.S., Parkb, J.W. & Ruckensteinc, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polym., 42, 4271–4280. DOI: 10.1016/S0032-3861(00)00768-0.
- 40. Crank, J. In the mathematics of diffusion, 2nd edn. Oxford, clarendon press. (1975), p 244.
- 41. Aziz, T., Nadeem, A.A., Sarwar, A., Perveen, I., Hussain, N., Khan, A.A., Daudzai, Z., Cui, H. & Lin, L. (2023). Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 11, 354. DOI: 10.3390/biomedicines11020354.
- 42. Aziz, T., Naveed, M., Makhdoom, S.I., Ali, U., Mughal, M.S., Sarwar, A., Khan, A.A., Zhennai, Y., Sameeh, M.Y., Dablool, A.S., Alharbi, A.A., Shahzad, M., Alamri, A.S. & Alhomrani, M. (2023). Genome Investigation and Functional Annotation of Lactiplantibacillus plantarum YW11 Revealing Streptin and Ruminococcin-A as Potent Nutritive Bacteriocins against Gut Symbiotic Pathogens. Molecules 28, 491. DOI: 10.3390/molecules28020491.
- 43. Britton, L.N., Ashman, R.B., Aminabhavi, T.M. & Cassidy, P.E. (1989). Permeation and diffusion of environmental pollutants through flexible polymers. J. Appl. Polym. Sci., 38, 227–236. DOI: 10.1002/app.1989.070380203.
- 44. Pourjavadi, A. & Barzegar, S. (2009). Smart Pectin based Superabsorbent Hydrogel as a Matrix for Ibubrofen as an Oral Non-steroidal Anti-inflammatory Drug Delivery. Starch/Strake. 61, 173–187. DOI: 10.1002/star.200800032.
- 45. Aziz, T., Naveed, M., Sarwar, A., Makhdoom, S.I., Mughal, M.S., Ali, U., Yang, Z., Shahzad, M., Sameeh, M.Y. & Alruways, M.W., et al. 2022. Functional Annotation of Lactiplantibacillus plantarum 13-3 as a Potential Starter Probiotic Involved in the Food Safety of Fermented Products. Molecules, 27, 5399. DOI: 10.3390/molecules27175399.
- 46. Naveed, M., Makhdoom, S.I., Rehman, S.U., Aziz, T., Bashir, F., Ali, U., Alharbi, M., Alshammari, A. & Alasmari, A.F. (2023). Biosynthesis and Mathematical Interpretation of Zero-Valent Iron NPs Using Nigella sativa Seed Tincture for Indemnification of Carcinogenic Metals Present in Industrial Effluents. Molecules, 28, 3299. DOI: 10.3390/molecules28083299.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f770abb-ab1a-4071-bfd1-fcefc1cb06c4