PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized geometry, vibration (IR and Raman) spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT). The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP) surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO) material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.
Wydawca
Rocznik
Strony
192--203
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Sakarya University, Arts and Sciences Faculty, Department of Physics, 54187, Sakarya, Turkey
autor
  • Sakarya University, Faculty of Engineering, Metallurgical and Materials Engineering, 54187, Sakarya, Turkey
autor
  • Sakarya University, Arts and Sciences Faculty, Department of Physics, 54187, Sakarya, Turkey
autor
  • Sakarya University, Arts and Sciences Faculty, Department of Physics, 54187, Sakarya, Turkey
autor
  • Kocaeli University, Arts and Sciences Faculty, Department of Physics, 41380, Kocaeli, Turkey
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O.Box 937, 50-950Wroclaw2, Poland
Bibliografia
  • 1. Munn R.W., Ironside C.N., Principles, Applications of Nonlinear Optical Materials, Chapman & Hall, London, 1993.
  • 2. Kaino T., Cai B., Takayama K., Adv. Funct. Mater., 12 (2002), 599.
  • 3. Prasad P.N., Williams D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991.
  • 4. Thakur M., Xu J., Bhowmilk A., Zhou L., Appl. Phys. Lett., 74 (1999), 635.
  • 5. Dalton L.R., Sullivan P.A., Bale D.H., Chem. Rev., 110 (2010), 25.
  • 6. Pecaut J., Lefur Y., Masse R., Acta Cryst. B, 49 (1993), 535.
  • 7. Levine B.F., Chem. Phys. Lett., 37 (1976), 516.
  • 8. Marchewka M.K., Drozd M., Pietraszko A., Mater. Sci. Eng. B-Adv., 100 (2003), 225.
  • 9. Subhashini V., Ponnusamy S., Muthamizhchelvan C., Spectrochim. Acta A, 87 (2012), 265.
  • 10. Sudharsana N., Subramanian G., Krishnakumar V., Nagalakshmi R., Spectrochim. Acta A, 97 (2012), 798.
  • 11. Selvakumar E., Chandramohan A., Anandha Babu G., Ramasamy P., J. Cryst. Growth, 401 (2014), 323.
  • 12. Arjunan V., Marchewka M.K., Pietraszko A., Kalaivani M., Spectrochim. Acta A, 97 (2012), 625.
  • 13. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb, M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam M.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Or-Tiz J.V., Cioslowski J., Fox D.J., Gaussian 09, Rev. D.01, Gaussian Inc., Wallingford Ct, 2009.
  • 14. Dennington R., Keith T., Millam J., GaussView, Ver. 5, Semichem Inc., Shawnee Mission, KS, 2009.
  • 15. Lee C., Yang W., Parr R.G., Phys. Rev. B, 37 (1988), 785.
  • 16. Becke A.D., J. Chem. Phys., 98 (1993), 5648.
  • 17. Frisch M.J., Pople J.A., Binkley J.S., J. Chem. Phys., 80 (1984), 3265.
  • 18. Wang Y., Saebar S., Pittman Jr C.U., J. Mol. Struct. Theochem., 281 (1993), 91.
  • 19. Pople J.A., Scott A.P., Wong M.W., Radom L., Israel J. Chem., 33 (1993), 345.
  • 20. Foresman J.B., In: E. Frisch (Ed.), Exploring Chemistry with Electronic Structure methods: A Guide to Using Gaussian, Gaussian Inc., Pittsburg, PA, 1996.
  • 21. Uçar İ., Tamer Ö., Sariboga B., Büyükgüngör O., Solid State Sci., 15 (2013), 7.
  • 22. Colthup N.B., Daly L.H., Wiberly S.E., Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990.
  • 23. Tamer Ö., Dege N., Demirtas¸ G., Avci D., Ata-Lay Y., Macit M., ŞAhin S., J. Mol. Struct., 1063 (2014), 295.
  • 24. Oszust J., Talik Z., Pietraszko A., Marchewka M.K., Baran J., J. Mol. Struct., 415 (1997), 53.
  • 25. Fleming I., Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
  • 26. Reed A.E., Weinhold F., J. Chem. Phys., 78 (1983), 4066.
  • 27. Foster J.P., Weinhold F., J. Am. Chem. Soc., 102 (1980), 7211.
  • 28. KunduracioğLu A., Tamer Ö., Avci D., Kani I., Atalay Y., C¸ Etinkaya B., Spectrochim. Acta A, 121 (2014), 35.
  • 29. Burland D.M., Miller R.D., Walsh C.A., Chem. Rev., 94 (1994), 31.
  • 30. Prasad O., Sinha L., Misra N., Narayan V., Kumar N., Pathak J., J. Mol. Struct., 940 (2010), 82.
  • 31. Castiglioni C., Del Zoppo M., Zerbi G., J. Raman Spectrosc., 24 (1993), 485.
  • 32. Öner N., Tamer O., Avci D., Atalay Y., Spectrochim. Acta A, 133 (2014), 542.
  • 33. Pir H., Günay N., Tamer Ö., Avci D., Atalay Y., Spectrochim. Acta A, 112 (2013), 331
  • 34. Tamer Ö., Dege N., Demirtas G., Avci D., Atalay Y., Macit M., Alaman Ağar A., Spectrochim. Acta A, 117 (2014), 13.
  • 35. Cheng L.T., Tam W., Stevenson S.H., Meredith G.R., Rikken G., Marder S.R., J. Phys. Chem., 95 (1991), 10631.
  • 36. Kaatz P., Donley E.A., Shelton D.P., J. Chem. Phys., 108 (1998), 849.
  • 37. Adant C., Dupuis M., Bredas J.L., Int. J. Quant. Chem., 56 (2004), 497.
  • 38. Avci D., BaşoğLu A., Atalay Y., Int. J. Quantum Chem., 111 (2011), 130.
  • 39. Avci D., Spectrochim. Acta A, 82 (2011), 37.
  • 40. Politzer P., Truhlar D.G. (Eds.), Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum, New York, 1981.
  • 41. Mulliken R.S., J. Chem. Phys., 23 (1995), 1833.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f72c5e8-41c8-4ff1-89ed-103609b2ac6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.