PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical and Experimental Analysis for Shape Improvement of a Cruciform Composite Laminates Specimen

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Numeryczna i eksperymentalna analiza poprawy kształtu próbek o kształcie krzyżowym wykonanych z laminatu
Języki publikacji
EN
Abstrakty
EN
The use of composite materials has spread to different applications among which, those using thin sheet plates subjected to biaxial loads are commonly used in the car and aerospace industries. Hence, there is need of a reliable specimen to test these materials under biaxial loads. This reliability depends on measurements that are accurate and repeatable. Thus these measurements depend on the proper design of specimens. This paper reviews the development of cruciform specimens of carbon fibre composite materials and how the geometric shape has evolved. Based on this review, a new geometric shape is proposed. This improvement is based on numerical analysis of the specimen and tests results of experimental measurements carried out using a four piston rig in an orthogonal arrangement. Deformation is measured in the centre of the specimen using strain gauges. By obtaining the principal stresses, it was found that maximum stresses occur in the centre of the specimen.
PL
Powszechnie stosowane są kompozyty poddawane testom dwuosiowym. Prawidłowe przeprowadzenie tego rodzaju testów jest trudne biorąc pod uwagę rozkład naprężeń badanych w próbce. Omówiono szereg struktur stosowanych dla uzyskania wyników dokładnych i powtarzalnych. Przeprowadzono analizę poprawy kształtu próbki rozpatrując laminat z udziałem włókien węglowych i żywicy epoksydowej. Przeprowadzono testy rozciągania dwuosiowego. Odkształcenia mierzono w centralnej części próbki stosując specjalne czujniki przesunięcia. Stwierdzono, że maksymalne naprężenia występują w środku próbki.
Rocznik
Strony
89--94
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • CICATA Querétaro, Querétaro, México
autor
  • CICATA Querétaro, Querétaro, México
autor
  • CINVESTAV Querétaro, Real de Juriquilla, México
autor
  • CICATA Querétaro, Querétaro, México
Bibliografia
  • 1. Smits A, Van Hemelrijck, Test results of biaxial tests on cruciform. Optimal Blades, OB_TG2_R014_VUB
  • 2. Smits A, Ramault C, Makris A, A Review of Biaxial Test Methods for Composites. Experimental Analysis of Nano and Engineering Materials and Structures, 2007, pp 933-934.
  • 3. Chen A S, Matthews F L, A review of multiaxial/ biaxial loading test for composites material. Composites 01/1993; DOI:10.1016/0010-4361(93) 90247-6
  • 4. Gutierrez J, Lozano A, Manzano A, Optimizacion del diseño de una probeta cruciforme por medio de elemento finito. In: XX Congreso internacional anual de Ingeniería mecánica SOMIM, Queretaro, Mex, (2014) 968-9173-01-4
  • 5. Kumazawa H, Takatoya T, Biaxial strength investigation of CFRP composites laminates by using cruciform specimens, JAPAN 181-0015
  • 6. Smits A,Van Hemelrijck, Philipidis T and Cardon A. Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates. Composite Science and Technology 2006; 66: 964-975.
  • 7. Chen AS, Matthews FL. A Review of multiaxial biaxial loading test for composite-material. Composites 1993; 24(5): 395-406.
  • 8. Ramault C, Makris A, Van Hemelrijck, Lamkanfi E and Van Paepegem W. Comparison of Different Techniques for Strain Monitoring of a Biaxially Loaded Cruciform Specimen, Int J for Experimental Mechanic Strain 2011; 47: 210–217.
  • 9. Lecompte D, Smits A, Sol H, Vantomme J and Hemelrijck V. Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, Int. Journal of Solids and Structures 2007; 44, 5.
  • 10. Ohtake Y, Rokugawa S and Masumoto H. Geometry Determination of Cruciform Type Specimen and Biaxial Tensile Test of C/C Composites, Key Engineering Materials 1999; 164-165.
  • 11. Makris A, Ramault C, Van Hemelrijck D, Lamkanfi E and Van Paepegem W. Biaxial mechanical fatigue using cruciform composite specimen.
  • 12. Abbassi F, Elfaleh I, Mistou S, Zghal A, Fazzini M and Djilali T, Experimental and numerical investigations of a thermoplastic composite (carbon/PPS) thermoforming. Structural Control and Health Monitoring, 2013; 18,7: 769-780, ISSN 1545-2255.
  • 13. Makris A, Vandenbergh T, Ramault C, Van Hemelrijck D, Lamkanfi E and Van Paepegem W. Shape optimization of a biaxially loaded cruciform specimen. Polymer Testing 2010; 29: 216–223.
  • 14. Lamkanfi E, Van Paepegem W, Degrieck J, Carla Ramault C, Makris A and Van Hemelrijck D. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 1. Polymer Testing 2010; 29: 7–13.
  • 15. Lamkanfi E, Van Paepegem W, Degrieck J, Carla Ramault C, Makris A and Van Hemelrijck D. Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 2 Influence of geometrical discontinuities. Polymer Testing 2010; 29: 132–138.
  • 16. Hemelrijck DV, Ramault C, Makris A, Clarke A, Williamson M, Biaxial testing of fibre reinforced composites. Proceedings of the 16th Int. Conference on Composite Materials, ICCM-16, Kyoto Japan; 2007
  • 17. Boehler JP, Demmerle S, Koss S. A New Direct Biaxial Testing Machine for Anisotropic Materials.
  • 18. Hinton M, Kaddour A. The second WW Failure Exercise: Benchmarking of Failure criteria under triaxial stresses for fibre-reinforced polymer composite. 2007.
  • 19. Welsh J, Mayes S, Biskner A. Experimental and numerical failure predictions of biaxially loaded quasi-isotropic carbon composites. Proceedings of the 16th Int. Conference on Composite Materials, ICCM-16, Kyoto Japan; 2007
  • 20. Welsh, J.S., and Adams, D.F., “The Development of an Electromechanical Triaxial Test Facility for Composite Materials,” Experimental Mechanics, Vol. 40, No. 3, September 2000, pp. 312-320.
  • 21. Welsh, J.S., and Adams, D.F., “An Experimental Investigation of the Biaxial Strength of IM6/3501-6 Carbon/Epoxy Cross-Ply Laminates using Cruciform Specimens,” Composites, 2002; 33, 6: 829-839.
  • 22. Zouani A, Bui-Quoc T, Bernard M., A proposed device for biaxial tensile fatigue testing. Fatigue and Fracture, 1996; ASME PVP-323, 1: 331-339.
  • 23. Hazell CR, Marin J. A possible specimen for the study of biaxial yielding of materials. Int. J. Mech. Sci. 1967; 9: 57-63.
  • 24. Lukyanov VF, Lyudsmirskii YG, Naprasnikov VV. Testing components of shell structures in the biaxial stress states. Ind. Lab.-USSR. 1986; 52(7): 661-664.
  • 25. Zalamea, F., Miguel Canet, J. y Oller, S. (2002). Tratamiento numérico de materiales compuestos mediante la teoría de homogenización. Vol. 64. Barcelona:CIMNE.
  • 26. Tiernan P, Hannon A, Design optimization of biaxial tensile test specimen using finite element analysis, Int J Mater Form (2014)7:117-123.
  • 27. Weiss, R. and Hernrich, M. Short-Fiber Reinforced CMCS: Potencials and Problems, in Mechanical Properties and Performance of Engineering Ceramics and Composites. Ceramic Engineering and Science Proceedings. 2005; 26, 2: 42.
  • 28. Hand lay-up technic, “Lecture 5.4: Hand Lay-up and Spray Lay-up”, internet course on http://www.nptel.ac.in/courses/112107085/module5/lecture4/lecture4.pdf. Accessed September 30, 2015.
  • 29. http://www.hexcel.com/Resources/DataSheets/Brochure-Data-Sheets/HexForce_Technical_Fabrics_Handbook.pdf, pp 5, Accessed September 30, 2015.
  • 30. https://www.google.com.mx/webhp?sourceid=chrome-instant&rlz=1C1GGGE_esMX454MX472&ion=1&espv=2&ie=UTF-8#q=3K-70p+ind, pp 20 22, Accessed September 30, 2015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f609e4d-1744-4fca-8ee0-691de80b87fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.