Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Kontrola niestabilności kapilarnej w warunkach hydrodynamicznego oddziaływania na złoże
Języki publikacji
Abstrakty
The paper presents the results of studies on optimisation of water impact on a reservoir by means of sequential periodic increase in hydrodynamic pressure in order to extract capillary trapped oil. The method provides a coordinated account of both displacement conditions and capacitive-filtration characteristics of fluid-saturated reservoirs. The results of experimental, theoretical and field studies of mass transfer processes in the presence of hydrodynamic nonequilibrium in heterogeneous porous media are presented. This paper considers a case where capillary forces are the determining factor for the displacement of immiscible liquids. Laboratory test results have shown that the formation of CO2 in the reaction of an alkaline solution with naphthenic components can make an additional contribution to the control of surface tension in porous media. A series of experimental studies were carried out on a core sample model to simulate the oil displacement by in-situ generated CO2 gas-liquid system. The article offers an analytical and technological solution to the problem of ensuring the value of “capillary number” and capillary penetration corresponding to the most complete extraction of trapped oil by regulating the “rate” of filtration (hydrodynamic injection pressure). The paper presents the field cases of implementing the new reservoir stimulation techniques to increase sweep efficiency. For effective residual oil recovery in fluid flow direction, conditions of stepwise (staged) maintenance of specified hydrodynamic water pressure at the boundary of injection contour are considered. Estimated calculations allow to determine time duration and stage-by-stage control of injection pressure as a requirement for reaching the expected increase in oil recovery.
W artykule przedstawiono wyniki badań nad optymalizacją oddziaływania wody na złoże poprzez sekwencyjne, okresowe zwiększanie ciśnienia hydrodynamicznego w celu wydobycia kapilarnie zatrzymanej ropy. Metoda ta pozwala w sposób skoordynowany uwzględnić zarówno warunki wyporu, jak i charakterystykę kapilarno-filtracyjną złóż nasyconych cieczą. Przedstawiono wyniki badań doświadczalnych, teoretycznych i praktycznych procesów przenoszenia masy w obecności braku równowagi hydrodynamicznej w heterogenicznych ośrodkach porowatych. W artykule rozpatrywany jest przypadek, w którym siły kapilarne są czynnikiem decydującym o wypieraniu niemieszalnych cieczy. Wyniki badań laboratoryjnych wykazały, że powstawanie CO2 w reakcji roztworu zasadowego ze składnikami naftenowymi może mieć dodatkowy udział w kontroli napięcia powierzchniowego w ośrodkach porowatych. Przeprowadzono serię badań eksperymentalnych na modelu próbki rdzeniowej w celu symulacji wypierania ropy przez generowany in-situ układ gazowo-cieczowy CO2. W artykule zaproponowano analityczne i technologiczne rozwiązanie problemu zapewnienia wartości „liczby kapilarnej” i przenikania kapilarnego odpowiadających najbardziej pełnemu wydobyciu zatrzymanej ropy, poprzez regulację „szybkości” filtracji (ciśnienia zatłaczania hydrodynamicznego). W artykule przedstawiono przykłady praktycznego zastosowania nowych technik stymulacji złoża w celu zwiększenia efektywności wydobycia. W celu osiągnięcia efektywnego wydobycia ropy resztkowej w kierunku przepływu cieczy rozważono warunki stopniowego (podzielonego na etapy) utrzymywania określonego ciśnienia hydrodynamicznego wody na granicy konturu zatłaczania. Przeprowadzone obliczenia szacunkowe pozwalają na określenie czasu trwania i etapowego kontrolowania ciśnienia zatłaczania jako warunku osiągnięcia oczekiwanego wzrostu odzysku ropy.
Czasopismo
Rocznik
Tom
Strony
71--83
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences
autor
- Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences
autor
- Institute of Geology and Geophysics of Azerbaijan National Academy of Sciences
Bibliografia
- AAmaral Anderson da S., Augustine J., Henriksen K., Rodrigues V.F., Steagal D.E., Paixão L.C.A. da Barbosa P., 2008. Equalization of the Water Injection Profile of a Subsea Horizontal Well: A Case History. SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA. DOI: 10.2118/112283-MS.
- Arekhov V., Hincapie R.E., Clemens T., Tahir M., 2020. Variations in wettability and interfacial tension during alkali-polymer application for high and low tan oils. Polymers, 12(10): 1–28. DOI: 10.3390/polym12102241.
- Blanchini F., Colaneri P., Valcher M.E., 2013. A stabilizable switched linear system does not necessarily admit a smooth homogeneous Lyapunov function. Proceedings of the IEEE Conference on Decision and Control: 5969–5974. 10.1109/CDC.2013.6760831.
- Brouwer D.R., Jansen J.D., 2002. Dynamic Optimization of Water Flooding with Smart Wells Using Optimal Control Theory. European Petroleum Conference, Aberdeen, United Kingdom. DOI: 10.2118/78278-MS.
- Brusilovsky A.I., Zazovsky A.F., 1991. A New Approach to Modelling of Multicomponent Two-Phase EOR Processes with Interphase Mass Exchange. SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA. DOI: 10.2118/22638-MS.
- Cheshkova T.V., Arysheva A.D., Min R.S., Sagachenko T.A., 2019. Composition of asphaltenes of heavy oil residues from the Usinskoye oil field. AIP Conference Proceedings, 2167(1): 020054. DOI: 10.1063/1.5131921.
- Clark B., Kleinberg R., 2002. Physics in oil exploration. Physics Today, 55(4): 48–53. DOI: 10.1063/1.1480782.
- Czupski M., Kasza P., Leśniak Ł., 2020. Development of Selective Acidizing Technology for an Oil Field in the Zechstein Main Dolomite. Energies, 13(22): 5940. DOI: 10.3390/en13225940.
- Dimov S.V., 2019. Experimental investigation of decreasing porosity and permeability of bead packing at suspension flow. Journal of Physics: Conference Series, 1404(1). DOI: 10.1088/1742-6596/1404/1/012015.
- Glotov A.V., 2021. Residual Water Content and Water Saturation of Bazhenov Formation Cores. SPE Symposium: Petrophysics XXI. Core, Well Logging, and Well Testing, Virtual. DOI: 10.2118/208418-MS.
- Hasanov R., Efendiyev R., Kazymov B., Guliyev A., Zeynalov A., Smirnova A., 2018. Inelastic Deformations of Rocks and their Influence on Development of the Oil and Gas Fields. Petroleum & Petrochemical Engineering Journal, 2(2): 1–8. DOI: 10.23880/ppej-16000161.
- Islam M.R., 1991. Cosurfactant-Enhanced Alkaline/Polymer Floods for Improving Recovery in a Fractured Sandstone Reservoir. In: Sharma M.K., Sharma G.D. (eds.): Particle Technology and Surface Phenomena in Minerals and Petroleum. Springer, Boston: 223–233. DOI:10.1007/978-1-4899-0617-5_16.
- Jones D.M., Watson J.S., Meredith W., Chen M., Bennett B., 2001. Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase. Analytical Chemistry, 73(3): 703–707. DOI: 10.1021/ac000621a.
- Larson R.G., Scriven L.E., Davis H.T., 1981. Percolatıon Theory of Two-Phase Flow in Porous Media. Chemical Engineering Science,36(1): 57–73.
- Lenormand R., Touboul E., Zarcone C., 1988. Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189: 165–187. DOI: 10.1017/S0022112088000953.
- Li Z., Chen H., Yu C., Du L., Qiao Y., Liu W., 2013. Hydrodynamic geological effect during the waterflooding of seriously heterogeneous reservoirs. Petroleum Exploration and Development, 40(2): 224–229. DOI: 10.1016/S1876-3804(13)60026-9.
- Liu Q., Dong M., Ma S., Tu Y., 2007. Surfactant enhanced alkaline flooding for Western Canadian heavy oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293(1–3): 63–71. DOI: 10.1016/j.colsurfa.2006.07.013.
- Lyu W., Zeng L., Chen M., Qiao D., Fan J., Xia D., 2018. An approach for determining the water injection pressure of low-permeability reservoirs. Energy Exploration and Exploitation, 36(5): 1210–1228. DOI: 10.1177/0144598718754374.
- Meng L., Ju B., 2022. Experimental Study of Water Displacement Rates on Remaining Oil Distribution and Oil Recovery in 2D Pore Network Model. Energies, 15(4). DOI: 10.3390/en15041501.
- Mirzajanzadeh A.K., Shakhverdiev A.K., 1997. Dinamicheskie processy v neftegazodobyche. Nauka.
- Musayev R.A., Jafarli S.Z., Xalilov E.G., Gashimov A.F., 1999. On the possibility of improving the efficiency of alkaline waterflooding of formations containing inactive oil. Nafta Press.
- Nakoryakov V., Kuznetsov V., 1997. Capillary phenomena, heat and mass transfer and wave processes in two-phase flow in porous systems and fillings. Applied Mechanics and Engineering Physics, 38(4): 155–166.
- Nowak T.J., 1953. The Estimation of Water Injection Profiles from Temperature Surveys. http://onepetro.org/JPT/article-pdf/5/08/203/2238788/spe-953203-g.pdf.
- Panahov G.M., Abbasov E.M., Jiang R., 2021a. The novel technology for reservoir stimulation: in situ generation of carbon dioxide for the residual oil recovery. Journal of Petroleum Exploration and Production, 11(4): 2009–2026. DOI: 10.1007/s13202-021-01121-5.
- Panahov G.M., Abbasov E.M., Jiang, R., 2021b. The novel technology for reservoir stimulation: in situ generation of carbon dioxide for the residual oil recovery. Journal of Petroleum Exploration and Production, 11(4): 2009–2026. DOI: 10.1007/s13202-021-01121-5.
- Pasquier S., Quintard M., Davit Y., 2017. Modeling two-phase flow of immiscible fluids in porous media: Buckley-Leverett theory with explicit coupling terms. Physical Review Fluids, 2(10). DOI: 10.1103/PhysRevFluids.2.104101.
- Peters R.A., 1931. Interfacial tension and hydrogen-ion concentration. Proceedings of the Royal Society of London. Series A, Containing
- Papers of a Mathematical and Physical Character, 133(821): 140–154. DOI: 10.1098/rspa.1931.0135.
- Phukan R., Gogoi S.B., Tiwari P., 2019. Enhanced oil recovery by alkaline-surfactant-alternated-gas/CO2 flooding. Journal of Petroleum Exploration and Production Technology, 9: 247–260. DOI: 10.1007/s13202-018-0465-0.
- Pruess K., Narasimhan T.N., 1985. A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media. Society of Petroleum Engineers Journal, 25(01): 14–26. DOI: 10.2118/10509-PA.
- Rao M.M., 1997. Second order nonlınear stochastıc dıfferentıal equatıons. Nonlinear Analysis, Theory, Methods & Applicatimu, 30(5):3147–3151.
- Ren B., Duncan I., 2019. Modeling Oil Saturation Evolution in Residual Oil Zones: Implications for CO2 EOR and Sequestration. Journal of Petroleum Science and Engineering, 177: 528–539. DOI: 10.1016/j.petrol.2019.02.072.
- Rudin J., Wasan D.T., 1992. Mechanisms for lowering of interfacial tension in alkali/acidic oil systems: Effect of added surfactant. Industrial & Engineering Chemistry Research, 31(8): 1899–1906. DOI:10.1021/IE00008A010.
- Sabitov A.R., Sharafutdinov, R. F., 1999. Thermal field of an oil bed in a nonstationary pressure field. Journal of Engineering Physics and Thermophysics, 72(2): 250–253. DOI: 10.1007/BF02699147.
- Saffman P.G., Taylor G.I., 1958. The penetration of a fluid into a porous medium of Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 245(1242): 312–329. DOI: 10.1098/rspa.1958.0085.
- Saha R., Uppaluri R.V.S., Tiwari P., 2018. Influence of emulsification, interfacial tension, wettability alteration and saponification on residual oil recovery by alkali flooding. Journal of Industrial and Engineering Chemistry, 59: 286–296. DOI: 10.1016/j.jiec.2017.10.034.
- Surguchev L., Koundin A., Melberg O., Rolfsvag T., Menard W.P., 2002. Cyclic water injection: Improved oil recovery at zero cost. Petroleum Geoscience, 8(1): 89–95. DOI: 10.1144/petgeo.8.1.89.
- Taylor K.C., Hawkins B.F., Islam R.M., Taylor K.C., Hawkins B.F., 1990. Dynamic Interfacial Tension in Surfactant Enhanced Alkaline Flooding. Journal of Canadian Petroleum Technology, 29(01): 50–55. DOI: 10.2118/90-01-05.
- Teklu T., Brown J.S., Kazemi H., Graves R., Al Sumaiti A.M., 2013. Residual Oil Saturation Determination – Case Studies in Sandstone and Carbonate Reservoirs. 75th EAGE Conference and Exhibition Incorporating SPE Europec. SPE-164825. DOI: 10.3997/2214-4609.20130893.
- Vavra E., Puerto M., Biswal S.L., Hirasaki G.J., 2020. A systematic approach to alkaline-surfactant-foam flooding of heavy oil: microfluidic assessment with a novel phase-behavior viscosity map. Scientific Reports, 10, 12930. DOI: 10.1038/s41598-020-69511-z.
- Weijermars R., van Harmelen A., 2017. Advancement of sweep zones in waterflooding: conceptual insight based on flow visualizations of oil-withdrawal contours and waterflood time-of-flight contours using complex potentials. Journal of Petroleum Exploration and Production Technology, 7(3): 785–812. DOI: 10.1007/s13202-016-0294-y.
- Wojnicki M., 2017. Experimental investigations of oil displacement using the WAG method with carbon dioxide. Nafta-Gaz, 73(11): 864–870. DOI: 10.18668/NG.2017.11.06.
- Wu C., de Visscher A., Gates I.D., 2019. On naphthenic acids removal from crude oil and oil sands process-affected water. Fuel, 253: 1229–1246. DOI: 10.1016/J.FUEL.2019.05.091.
- Yin Z., Yuan P., Lian X., Zheng Y., Zheng H., Yin Z., Yuan P., Lian X., Zheng Y., Zheng H., 2019. Components of Paraffin-Base and Naphthenic-Base Crude Oil and Their Effects on Interfacial Performance. Open Journal of Yangtze Oil and Gas, 4(4): 270–284. DOI:10.4236/OJOGAS.2019.44022.
- Zeitler H., 1993. About Hausdorff-Besicovitch-dimension. International Journal of Mathematical Education in Science and Technology,24(1): 63–71. DOI: 10.1080/0020739930240108.
- Zhu X., Cai H., Wang X., Zhu Q., Meng Z., Zhu X., Cai H., Wang X., Zhu Q., Meng Z., 2019. Research and Application of Water Flooding Timing and Method for Blocky Bottom Water Fractured Buried Hill Reservoir. Journal of Power and Energy Engineering, 7(9): 1–10.DOI: 10.4236/jpee.2019.79001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f5e1eb0-919a-46ac-acc9-73bc3e066320