PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of a two-dimensional photonic crystal as an antireflection coating for optoelectronic applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In article a two-dimensional photonic crystal (PhC) is considered and modelled as a new generation antireflection coating for optoelectronic devices. Traditional antireflective coatings (ARCs) reduce the reflection of the radiation only – the new generation of antireflective coatings should affect the distribution of the radiation also. Such functionality can be provided by the two-dimensional PhC which reduce the reflection and scatter transmitted light. Prior to the fabrication, the PhCs should be designed and analysed. Results of the analysis should provide quantitative means for choice of materials and design solutions. In work, we analyse the electromagnetic field distribution as Poynting vectors inside the materials of optoelectronic devices, in order to investigate the possibility of improving the construction of future optoelectronic devices. Furthermore, we calculate the reflection and transmission of that ARC. It’s a complex optic analysis of new generation of ARC. The numerical analysis has been performed with the FDTD method in Lumerical Software. In work, we consider the two-dimensional photonic crystal on the top surface of optoelectronic structures. We compared the results with the traditional ARC from these same parameters as PhC: thickness and material. As an example, we presented the application of modelled, photonic crystal, thin-film, GaAs solar cells with PhC on top. The efficiency of this solar cell, using the photonic crystal, was improved by 6.3% over the efficiency of this same solar cell without PhC. Thus, our research strongly suggests that the unique properties of the photonic crystal could be used as a new generation of ARC.
Słowa kluczowe
Twórcy
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, 11/17 Janiszewskiego St., 50-372 Wrocław, Poland
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, 11/17 Janiszewskiego St., 50-372 Wrocław, Poland
Bibliografia
  • [1] A. Macleod, The early days of optical coating, J. Opt. A: Pure Appl. Opt. 1(1999) 779–783.
  • [2] U. Sikdera, M.A. Zamanb, Optimization of multilayer antireflection coating for photovoltaic applications, Opt. Laser Technol. 79 (May) (2016) 88–94.
  • [3] P. Mandal, S. Sharma, Progress in plasmonic solar cell efficiency improvement: a status review, Adv. Mater. Res. -Switzerland 65 (Novemeber) (2016) 537–552.
  • [4] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, Light trapping in thin-film silicon solar cells with submicron surface texture, Opt.Express 17 (25) (2009) 23058–23065.
  • [5] J.L. Plawsky, J.K. Kim, E.F. Schubert, Engineered nanoporous and nanostructured films, Mater. Today 12 (June (6)) (2009) 36–45.
  • [6] K.-S. Han, H. Lee, D. Kim, H. Lee, Fabrication of anti-reflection structure onprotective layer of solar cells by hot-embossing method, Solar Energy Mater.Solar Cells 93 (August (8)) (2009) 1214–1217.
  • [7] P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Improvingthin-film crystalline silicon solar cell efficiencies with photonic crystals, Opt.Express 15 (December (25)) (2007) 16986–17000.
  • [8] S.J. Fonash, Chapter 3 – Light-trapping structures, in: Light Trapping in SolarCell and Photo-Detector Devices, Elsevier, 2015, pp. 33–48.
  • [9] S.-Y. Lin, Experimental Study of Electronic Quantum Interference, PhotonicCrystal Cavity, Photonic Band Edge Effects for Optical Amplification, Technical Report, 07 Nov 2014, 11 Jan 2016, New York, 2016.
  • [10] X. Sheng, L.Z. Broderick, L.C. Kimerling, Photonic crystal structures for lighttrapping in thin-film Si solar cells: modeling, process and optimizations, Opt.Commun. 314 (March) (2014) 41–47.
  • [11] P. Chen, G. Hou, H. Qian, Z. Jing, Z. Jianjun, N. Jian, Z. Xiaodan, Z. Ying, F. QiHua,An efficient light trapping scheme based on textured conductive photoniccrystal back reflector for performance improvement of amorphous siliconsolar cells, Appl. Phys. Lett. 105 (August (7)) (2014), 073506.
  • [12] A.H. Aly, A.A. Ameen, D. Vigneswaran, Superconductor nanometallic photoniccrystals as a novel smart window for low-temperature applications, J.Supercond. Nov. Magn. (2018) 1–7 https://doi.org/10.1007/s10948-018-4716-6.
  • [13] P. Pathi, A. Peer, R. Biswas, Nano-photonic structures for light trapping inultra-thin crystalline silicon solar cells, Nanomaterials-Basel 7 (1) (2017) 17.
  • [14] C. Shemelya, D.F. DeMeo, T.E. Vandervelde, Two dimensional metallicphotonic crystals for light trapping and anti-reflective coatings inthermophotovoltaic applications, Appl. Phys. Lett. 104 (January (2) (2014) 021115.
  • [15] X.-J. Liu, Y. Liang, J. Ma, S.-Q. Zhang, H. Li, X.-Y. Wu, Y.-H. Wu,Two-dimensional function photonic crystals, Physica E 85 (January) (2017) 227–237.
  • [16] V. Fakouri-Farid, A. Andalib, Design and simulation of an all optical photoniccrystal-based comparator, Optik 172 (2018) 241–248.
  • [17] Z. Xu, M. Li, M. Xu, J. Zou, H. Tao, L. Wang, J. Peng, Light extraction of flexibleOLEDs based on transparent polyimide substrates with 3-D photonicstructure, Adv. Polym. Sci. 44 (May) (2017) 225–231.
  • [18] M. Parchine, T. Kohoutek, M. Bardosova, M.E. Pemble, Large area colloidalphotonic crystals for light trapping in flexible organic photovoltaic modulesapplied using a roll-to-roll Langmuir-Blodgett method, Solar Energy Mater.Solar Cells 185 (October) (2018) 158–165.
  • [19] S. Baek, et al., Monolithic two-dimensional photonic crystal reflectors for thefabrication of high efficient and highly transparent dye-sensitized solar cells, ACS Appl. Mater. Interface 9 (2017) 37006–37012.
  • [20] A. Nirmal, et al., Light trapping in inverted organic photovoltaics with nanoimprinted ZnO photonic crystals, IEEE J. Photovolt. 7 (2017) 545–549.
  • [21] A. Peer, R. Biswas, Nanophotonic organic solar cell architecture for advancedlight trapping with dual photonic crystals, ACS Photonics 1 (2014) 840–847.
  • [22] A.H. Aly, H. Sayed, Photonic band gap materials and monolayer solar cell, Surf.Rev. Lett. 25 (8) (2018) 6, 1850103.
  • [23] S. Bhattacharya, S. John, Designing high-efficiency thin silicon solar cells usingparabolic-pore photonic crystals, Phys. Rev. Appl. 9 (2018) 044009.
  • [24] J. Joannopoulos, J.N. Winn, S.G. Johns, R.D. Meade, Photonic Crystals: Moldingthe Flow of Light, Princeton University Press, Princeton, 2008.
  • [25] J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, New York, 2008.
  • [26] P. Nowak, M. Krawczyk, Phononic band gaps in one-dimensional phononiccrystals with nanoscale periodic corrugations at interfaces. FDTD and PWM simulations, AIP Conf. Proc. 1 (16) (2010) 85–95.
  • [27] A.J. Danner, An Introduction to the Plane Wave Expansion Method for Calculating Photonic Crystal Band Diagrams, University of Illinois at Urbana-Champaign, Urbana, 2002.
  • [28] J.B. Schneider, Understanding the Finite-Difference Time-Domain, January, 2011.
  • [29] A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edition, Chapman & Hall/CRC, 2002.
  • [30] J.-M. Liu, Photonic Devices, Cambridge University Press, Cambridge, 2005.
  • [31] B. Ziętek, Optoelektronika, Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2005.
  • [32] M.A. Green, M.E. Watt, R. Corkish, S.R. Wenham, Applied Photovoltaics, Earthscan, 2007.
  • [33] M.J. Dodge, “Refractive Index” in Handbook of Laser Science and Technology,Volume IV, Optical Materials: Part 2, CRC Press, Boca Raton, 1986.
  • [34] E. Palik, Handbook of Optical Constants of Solids, Academic Press, 2012.
  • [35] Lumerical Inc., Lumerical Inc. | Innovative Photonic Design Tools [Online]. Available: http://www.lumerical.com/tcad-products/fdtd/. (Accessed 8 February 2019).
  • [36] S.G. Johnson, Notes on Perfectly Matched Layers (PMLs), MIT course, 2007.
  • [37] J.P. Berenger, Perfectly Matched Layer (PML) for Computational Electromagnetics, Morgan & Claypool Publishers, 2007.
  • [38] S.D. Gedney, B. Zhao, An auxiliary differential equation formulation for thecomplex-frequency shifted PML, IEEE Trans. Antenn. Propag. 58 (no. 3) (2010) 838–847.
  • [39] Lumerical Inc., PML Boundary Conditions, [Online]. Available: Lumerical, https://kb.lumerical.com/en/ref sim obj pml boundary conditions.html (Accessed 8 February 2019).
  • [40] V.A. Kuzkin, On angular momentum balance for particle systems with periodic boundary conditions, Zamm-Z Angew. Math. Mech. 95 (11) (2015)1290–1295.
  • [41] Lumerical Inc., Bloch Boundary Conditions Lumerical Knowledge Base, [Online]. Available: Lumerical, https://kb.lumerical.com/en/ref sim obj blochbc.html (Accessed 8 February 2019).
  • [42] H.A. MacLeod, Thin-Film Optical Filters, Institute of Physics Publishing, Bristol, 1986, pp. 2001.
  • [43] T. Kaino, Y. Katayama, Polymers for optoelectronics, Soc. Plast. E (1989) 1209–1214.
  • [44] H.M. Zidan, M. Abu-Elnader, Structural and optical properties of pure PMMA and metal chloride-doped PMMA films, Physica B. 355 (1–4) (2005) 308–317.
  • [45] D. Przybylski, S. Patela, Numerical analysis of the influence of the two dimensional photonic crystals on the efficiency of solar cells, 4th International Conference on Advances in Electronic and Photonic Technologies (2016).
  • [46] Chapter 25. The measurement of transmission, absorption, emission, andreflection, in: J.M. Palmer, M. Bass (Eds.), Handbook of Optics. Volume II Devices, Measurements, and Properties, McGraw-Hill, Inc., New York, 1995, p.899.
  • [47] J.A. Stratton, Electromagnetic Theory, IEEE Press, John Wiley & Sons, New Jersey, 2007.
  • [48] Lumerical Inc., “Silicon Solar Cell” Lumerical, [Online]. Available: https://apps.lumerical.com/solar cells device getting started.html. (Accessed 8 February 2019).
Uwagi
This research was supported by the Statutory Grant of Facultyof Microsystem Electronics and Photonics, Wroclaw University ofScience and Technology.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f5a3e63-973a-4ce2-992c-f4e6f4aee2a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.