PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Checkweigher using an EMFC weighing cell with magnetic springs and air-bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A dynamic weighing system or a checkweigher is an automated inspection system that measures the weight of objects while transferring them between processes. In our previous study, we developed a new electromagnetic force compensation (EMFC) weighing cell using magnetic springs and air bearings. This weighing cell is free from flexure hinges which are vulnerable to shock and fatigue and also eliminates the resonance characteristics and implements a very low stiffness of only a few N/m due to the nature of the Halbach array magnetic spring. In this study, we implemented a checkweigher with the weighing cell including a loading and unloading conveyor to evaluate its dynamic weighing performances. The magnetic springs are optimized and re-designed to compensate for the weight of a weighing conveyor on the weighing cell. The checkweigher has a weighing repeatability of 23 mg (1σ) in static situation. Since there is no low-frequency resonance in our checkweigher that influences the dynamic weighing signal, we could measure the weight by using only a notch filter at high conveyor speeds. To determine the effective measurement time, a dynamic weighing process model is used. Finally, the proposed checkweigher meets Class XIII of OIML R51-1 of verification scale e 0.5 g at a conveyor speed of up to 2.7 m/s.
Rocznik
Strony
465--478
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of Korea
  • Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of Korea
  • Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, Suwon, Republic of Korea
Bibliografia
  • [1] Schwartz, R. (2000). Automatic weighing-principles, applications and developments. Proceedings of XVI IMEKO, Austria, 259-267.
  • [2] Yamazaki, T., & Ono, T. (2007). Dynamic problems in measurement of mass-related quantities. Proceedings of the SICE Annual Conference, Japan, 1183-1188. https://doi.org/10.1109/SICE.2007.4421164.
  • [3] Mettler-Toledo GmbH. (2021, June 13). https://www.mt.com/.
  • [4] Yamakawa, Y., Yamazaki, T., Tamura, J., & Tanaka, O. (2009). Dynamic behaviors of a checkweigher with electromagnetic force compensation. Proceedings of the XIX IMEKO, Portugal, 208-211. https://www.imeko.org/publications/wc-2009/IMEKO-WC-2009-TC3-184.pdf.
  • [5] Yamakawa, Y., & Yamazaki, T. (2010). Dynamic behaviors of a checkweigher with electromagnetic force compensation (2nd report). Proceedings of the XIX IMEKO, Portugal. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-001.pdf.
  • [6] Yamakawa, Y., & Yamazaki, T. (2013). Simplified dynamic model for high-speed checkweigher. International Journal of Modern Physics. 24, 1-8. https://doi.org/10.1142/S2010194513600367.
  • [7] Yamakawa, Y., & Yamazaki, T. (2015). Modeling and control for checkweigher on floor vibration. Proceedings of the XXI IMEKO, Czech Republic. https://www.imeko.org/IMEKO-WC-2015-TC3-093.pdf.
  • [8] Yamazaki, T., Sakurai, Y., Ohnishi, H., Kobayashi, M., & Kurosu, S. (2002). Continuous mass measurement in checkweighers and conveyor belt scales. Proceedings of the SICE Annual Conference, 470-474. https://doi.org/10.1109/SICE.2002.1195446.
  • [9] Sun, B., Teng, Z., Hu, Q., Lin, H., & Tang, S. (2020). Periodic noise rejection of checkweigher based on digital multiple notch filter. IEEE Sensors Journal, 20(13), 7226-7234. https://doi.org/10.1109/JSEN.2020.2978232.
  • [10] Piskorowski, J., & Barcinski, T. (2008). Dynamic compensation of load cell response: A time-varying approach. Mechanical Systems and Signal Processing, 22(7), 1694-1704. https://doi.org/10.1016/j.ymssp.2008.01.001.
  • [11] Pietrzak, P., Meller, M., & Niedźwiecki, M. (2014). Dynamic mass measurement in checkweighers using a discrete time-variant low-pass filter. Mechanical Systems and Signal Processing, 48(1-2), 67-76. https://doi.org/10.1016/j.ymssp.2014.02.013.
  • [12] Umemoto, T., Sasamoto, Y., Adachi, M., Kagawa, Y. (2008). Improvement of accuracy for continuous mass measurement in checkweighers with an adaptive notch filter. Proceedings of the SICE Annual Conference, 1031-1035. https://doi.org/10.1109/SICE.2008.4654807.
  • [13] Boschetti, G., Caracciolo, R., Richiedei, D., & Trevisani, A. (2013). Model-based dynamic compensation of load cell response in weighing machines affected by environmental vibrations. MechanicalSystems and Signal Processing, 34(1-2), 116-130. https://doi.org/10.1016/j.ymssp.2012.07.010.
  • [14] Sun, B., Teng, Z., Hu, Q., Tang, S., Qiu, W., & Lin, H. (2020). A novel LMS-based SANC for conveyor belt-type checkweigher. IEEE Transactions on Instrumentation and Measurement, 70, 1-10. https://doi.org/10.1109/TIM.2020.3019618.
  • [15] Niedźwiecki, M., Meller, M., & Pietrzak, P. (2016). System identification-based approach to dynamic weighing revisited. Mechanical Systems and Signal Processing, 80, 582-599. https://doi.org/10.1016/j.ymssp.2016.04.007.
  • [16] Choi, I. M., Choi, D. J., & Kim, S. H. (2001). The modelling and design of a mechanism for micro-force measurement. Measurement Science and Technology, 12(8), 1270-1278. https://doi.org/10.1088/0957-0233/12/8/339.
  • [17] Hilbrunner, F., Weis, H., Fröhlich, T., & Jäger, G. (2010). Comparison of different load changers for EMFC-balances. Proceedings of the IMEKO TC3, TC5, and TC22 Conferences Metrology in Modern Context, Thailand. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-016.pdf.
  • [18] Yoon, K. T., Park, S. R., & Choi, Y. M. (2020). Electromagnetic force compensation weighing cel with magnetic springs and air bearings. Measurement Science and Technology, 32(1). https://doi.org/10.1088/1361-6501/abae8e.
  • [19] Zhang, H., Kou, B., Jin, Y., & Zhang, H. (2014). Modeling and analysis of a new cylindrical magnetic levitation gravity compensator with low stiffness for the 6-DOF fine stage. IEEE Transactions on Industrial Electronics, 62(6), 3629-3639. https://doi.org/10.1109/TIE.2014.2365754.
  • [20] Choi, Y. M., & Gweon, D. G. (2010). A high-precision dual-servo stage using Halbach linear active magnetic bearings. IEEE/ASME Transactions on Mechatronics, 16(5), 925-931. https://doi.org/10.1109/TMECH.2010.2056694.
  • [21] Lijesh, K. P., & Hirani, H. (2015). Design and development of Halbach electromagnet for active magnet bearing. Progress in Electromagnetics Research C, 56, 173-181. https://doi.org/10.2528/PIERC15011411.
  • [22] International Organization of Legal Metrology. (2006). Automatic Catchweighing Instruments. Part 1: Metrological and Technical Requirements - Tests (International Recommendation OIML R 51-1). https://www.oiml.org/en/files/pdf_r/r051-1-e06.pdf.
  • [23] Choi, Y. M., Lee, M. G., Gweon, D. G., & Jeong, J. (2009). A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. Review of Scientific Instruments, 80(4), 45-106. https://doi.org/10.1063/1.3116482.
  • [24] Diethold, C., Fröhlich, T., Hilbrunner, F., & Jäger, G. (2010). High precision optical position sensor for electromagnetic force compensated balances. Proceedings of the IMEKO TC3, TC5, and TC22 Conferences Metrology in Modern Context, 91-94. https://www.imeko.org/publications/tc3-2010/IMEKO-TC3-2010-022.pdf.
  • [25] Fukuda, K., Yoshida, K., Kinugasa, T., Kamon, M., Kagawa, Y., & Ono, T. (2010). A new method of mass measurement for checkweighers. Metrology and Measurement Systems, 17(2), 151-162. https://doi.org/10.2478/v10178-01-0014-8.
  • [26] Juseop, L., & William, J. (2012). Tunable high quality-factor absorptive bandstop filter design. IEEE/MTT-S International Microwave Symposium Digest, Canada. https://doi.org/10.1109/MWSYM.2012.6259759.
Uwagi
1. This work was supported partly by the Ajou University research fund and the Technology Innovation Program, 10067103, “Development of Integrated Packing System for Tablet Blister Packaging of up to 900 blisters per minute”, funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f564148-8233-497a-a20e-e65037f9ac2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.