PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the Phytoremediation Capability of Athyrium filix-femina, Ludwigia peruviana and Sphagneticola trilobata for Heavy Metal Contamination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metals are one of the leading environmental pollutants that are hazardous to the health of humans, soils, plants, and aquatic life. This study investigated the potential of Athyrium filix-femina, Ludwigia peruviana, and Sphagneticola trilobata for phytoextraction of Al, Ag, Cd, Cr, Ga, and Sr. To evaluate the heavy metal uptake by the plants, a pot experiment was conducted using uncontaminated soil mixed with a heavy metal solution. At the end of thirty days of planting, the bioconcentration and translocation factors were calculated. Cd accumulated to a greater degree in the shoots of A. filix-femina and L. peruviana than in their roots (8% and 12% respectively). Conversely, S. trilobata accumulated 27% more Cd in its roots than in its shoots. In all three plant species, roots had significantly higher heavy metal concentrations than shoots. These findings demonstrate that L. peruviana, A. filix-femina, and S. trilobata have high potential for phytoextraction and bioaccumulation of Cd, Sr, Ag, and Ga. The herbaceous nature of these plants, coupled with their deep roots and rapid growth rates, make them promising candidates for phytoremediation in heavy metal-contaminated soils.
Rocznik
Strony
165--174
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
autor
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
Bibliografia
  • 1. Alaboudi K.A., Berhan A., Graham B. 2018. Phytoremediation of Pb and Cd Contaminated Soils by Using Sunflower (Helianthus annuus) Plant. Annals of Agricultural Sciences, 63(1), 123–27. https://doi.org/10.1016/j.aoas.2018.05.007.
  • 2. Ali H., Ezzat K. 2019. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353–76. https://doi.org/10.1080/10807039.2018.1469398.
  • 3. Alves A.R.A., Qifan Y., Oliveira R., Silva E.F., Novo L.A.B. 2022. Plant Growth-Promoting Bacteria in Phytoremediation of Metal-Polluted Soils: Current Knowledge and Future Directions. Science of The Total Environment, 838(9), 156435.
  • 4. Amin H., Basir A.A., Farah A., Muhammad A.S. 2013. Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. American Journal of Plant Sciences, 4(12), 2431–39. https://doi.org/10.4236/ajps.2013.412302
  • 5. Anyinkeng N., Godlove A.N., Afui M.M., Aaron S.T. 2020. Phytoremediation Potential of Some Macrophytes from a Car Wash Stream in Buea, Southwestern Cameroon. Journal of Environmental Protection, 11(12), 1052–63. https://doi.org/10.4236/jep.2020.1112066
  • 6. Artiola, J.F., Walworth J.L., Musil S.A., Crimmins M.A. 2019. Soil and Land Pollution. Environmental and Pollution Science, Elsevier, 219–35. https://doi.org/10.1016/B978-0-12-814719-1.00014-8
  • 7. Atiaga, O., Ruales J., Nunes L.M., Otero X.L. 2021. Toxic Elements in Soil and Rice in Ecuador. Agronomy, 11(8), 1594. https://doi.org/10.3390/agronomy11081594
  • 8. Aveiga-Ortiz, A., Pinargote C., Peñarrieta F., Teca J., Alcántara F. 2022. Adsorption of Mercury and Zinc in Agricultural Soils by Sphagneticola trilobata. Journal of Ecological Engineering, 23(3), 230–35. https://doi.org/10.12911/22998993/146115
  • 9. Bhat, S.A., Bashir O., Ul Haq S.A., Amin T., Rafiq A., Ali M., Américo-Pinheiro J., Sher F. 2022. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere, 303(9), 134788. https://doi.org/10.1016/j.chemosphere.2022.134788.
  • 10. Chamba-Eras, I., M. Griffith D., Kalinhoff C., Ramírez J., Gázquez M.J. 2022. Native Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon. Plants, 11(9), 1186. https://doi.org/10.3390/plants11091186
  • 11. Charvalas, G., Solomou A.D., Giannoulis K.D., Skoufogianni E., Bartzialis D., Emmanouil C., Danalatos N.G. 2021. Determination of heavy metals in the territory of contaminated areas of greece and their restoration through hyperaccumulators. Environmental Science and Pollution Research, 28(4), 3858–63. https://doi.org/10.1007/s11356-020-11920-8
  • 12. Chen, K.-Y., Yang P.-T., Chang H.-F., Yeh K.-C., Wang S.-L. 2022. Soil gallium speciation and resulting gallium uptake by rice plants. Journal of Hazardous Materials, 424(2), 127582. https://doi.org/10.1016/j.jhazmat.2021.127582
  • 13. Chowdhury A., Chowdhury M., Choudhury D., Das A. 2013. Ludwigia peruviana (Linnaeus) H. Hara [Onagraceae]: A New Record for West Bengal, India. Pleione, 7(1), 5.
  • 14. DalCorso, G., Manara A., Furini A. 2013. An Overview of Heavy Metal Challenge in Plants: From Roots to Shoots. Metallomics, 5(9), 1117. https://doi.org/10.1039/c3mt00038a
  • 15. Ding, S., Yu X., Zhang J., Yin Z., Zou Y., Wang G., Sheng L., He C. 2021. Bioconcentration and Translocation of Elements Regulate Plant Responses to Water-Salt Conditions in Saline-Alkaline Wetlands. Environmental and Experimental Botany, 183 (3), 104360. https://doi.org/10.1016/j.envexpbot.2020.104360
  • 16. Drăghiceanu, O., Dobrescu C., Popescu M., Soare L. 2019. The Effects of Nickel on the Morphological and Biochemical Characteristics of Ferns. Biologie, 28(1), 59–65.
  • 17. Durante-Yánez E., Martínez-Macea M.A., Enamorado-Montes G., Combatt Caballero E., Marrugo-Negrete J. 2022. Phytoremediation of soils contaminated with heavy metals from gold mining activities using Clidemia sericea D. Don. Plants, 11(5), 597. https://doi.org/10.3390/plants11050597
  • 18. Farhangi-Abriz S., Ghassemi-Golezani K. 2021. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicology and Environmental Safety, 211(3), 111904.
  • 19. Gholizadeh, M., Hu X. 2021. Removal of Heavy Metals from Soil with Biochar Composite: A Critical Review of the Mechanism. Journal of Environmental Chemical Engineering, 9(5), 105830. https://doi.org/10.1016/j.jece.2021.105830
  • 20. González H., Sarah, Ghneim-Herrera T. 2021. Heavy Metals in Soils and the Remediation Potential of Bacteria Associated with the Plant Microbiome. Frontiers in Environmental Science, 9(4), 604216. https://doi.org/10.3389/fenvs.2021.604216
  • 21. Kafle A., Timilsina A., Gautam A., Adhikari K., Bhattarai A., Aryal N. 2022. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8(7), 100203. https://doi.org/10.1016/j.envadv.2022.100203
  • 22. Kazienko A., Torzewski K., Wojtuń B., Samecka-Cymerman A., Mróz L., Kempers A. 2020. Trace Elements in Athyrium distentifolium from Alpine Vegetation in the Karkonosze, SW Poland. Environmental Monitoring and Assessment, 192(8), 485. https://doi.org/10.1007/s10661-020-08438-4
  • 23. Kong S., Tang J., Ouyang F., Chen M. 2021. Research on the Treatment of Heavy Metal Pollution in Urban Soil Based on Biochar Technology. Environmental Technology & Innovation, 23(8), 101670. https://doi.org/10.1016/j.eti.2021.101670
  • 24. Lee J., Kaunda R.B., Sinkala T., Workman C.F., Bazilian M., Clough G. 2021. Phytoremediation and Phytoextraction in Sub-Saharan Africa: Addressing Economic and Social Challenges. Ecotoxicology and Environmental Safety, 226(12), 112864.
  • 25. Li C., Zhou K., Qin W., Tian C., Qi M., Yan X., Han W. 2019. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380–94.
  • 26. Long Z., Zhu H., Bing H., Tian X., Wang Z., Wang X., Wu Y. 2021. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. Journal of Hazardous Materials, 420(10), 126638. https://doi.org/10.1016/j.jhazmat.2021.126638
  • 27. Madanan M.T., Khursheed I.S., Varghese G., Kaushal R. 2021. Application of Aztec Marigold (Tagetes erecta L.) for Phytoremediation of Heavy Metal Polluted Lateritic Soil. Environmental Chemistry and Ecotoxicology, 3, 17–22. https://doi.org/10.1016/j.enceco.2020.10.007
  • 28. Mikhailovskaya L.N., Pozolotina V.N. 2020. Spatial distribution of 90Sr from different sources in soils of the Ural Region, Russia. In: Strontium Contamination in the Environment, edited by Pankaj Pathak, Dharmendra K. Gupta, 88, 141–58. The Handbook of Environmental Chemistry. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-15314-4_8
  • 29. Mongkhonsin B., Nakbanpote W., Meesungnoen O., Narasimha M. 2019. Adaptive and Tolerance Mechanisms in Herbaceous Plants Exposed to Cadmium. In Cadmium Toxicity and Tolerance in Plants, Elsevier, 73–109. https://doi.org/10.1016/B978-0-12-814864-8.00004-8
  • 30. Mossor-Pietraszewska T. 2001. Effect of Aluminium on Plant Growth and Metabolism. Acta Biochimica Polonica, 48(3), 673–86. https://doi.org/10.18388/abp.2001_3902
  • 31. Musilova J., Arvay J., Vollmannova A., Toth T., Tomas J. 2016. Environmental contamination by heavy metals in region with previous mining activity. Bulletin of Environmental Contamination and Toxicology, 97(4), 569–75. https://doi.org/10.1007/s00128-016-1907-3
  • 32. Ndiate, N.I., Li Qun C., Nkoh Nkoh J. 2022. Importance of soil amendments with biochar and/or arbuscular mycorrhizal fungi to mitigate aluminum toxicity in Tamarind (Tamarindus indica L.) on an Acidic Soil: A Greenhouse Study. Heliyon, 8(2), e09009.
  • 33. Nirola, R., Megharaj M., Palanisami T., Aryal R., Venkateswarlu K., Naidu R. 2015. Evaluation of Metal Uptake Factors of Native Trees Colonizing an Abandoned Copper Mine – a Quest for Phytostabilization. Journal of Sustainable Mining, 14(3), 115–23. https://doi.org/10.1016/j.jsm.2015.11.001
  • 34. Njoku, K.L., Nwani S. 2022. Phytoremediation of heavy metals contaminated soil samples obtained from mechanic workshop and dumpsite using amaranthus spinosus. Scientific African, 17(9), e01278. https://doi.org/10.1016/j.sciaf.2022.e01278
  • 35. Oliveira M., de Souza D., Madari B.E., Anselmo E. 2021. Predicting Silicon, Aluminum, and Iron Oxides Contents in Soil Using Computer Vision and Infrared. Microchemical Journal, 170(11), 106669. https://doi.org/10.1016/j.microc.2021.106669
  • 36. Pacwa-Płociniczak M., Byrski A., Chlebek D., Prach M., Płociniczak T. 2023. A deeper insight into the phytoremediation of soil polluted with petroleum hydrocarbons supported by the Enterobacter ludwigii ZCR5 strain. Applied Soil Ecology, 181 (1), 104651. https://doi.org/10.1016/j.apsoil.2022.104651
  • 37. Papazoglou, E.G., Fernando A.L. 2017. Preliminary Studies on the Growth, Tolerance and Phytoremediation Ability of Sugarbeet (Beta vulgaris L.) Grown on Heavy Metal Contaminated Soil. Industrial Crops and Products, 107(11), 463–71. https://doi.org/10.1016/j.indcrop.2017.06.051
  • 38. Pernía, B., Calabokis M., Noris K., Bubis J., Guerra M., Castrillo M. 2019. Effects of Cadmium in Plants of Sphagneticola trilobata (L.) Pruski. Bioagro, 31(2), 133–42.
  • 39. Prabagar S., Mudiyanselage R., Lintha A., Thuraisingam S., Prabagar J. 2021. Accumulation of heavy metals in grapefruit, leaves, soil and water: A study of influential factors and evaluating ecological risks in Jaffna, Sri Lanka. Environmental and Sustainability Indicators, 12(12), 100147.
  • 40. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/.
  • 41. Raza A., Habib M., Najafi S., Zahid Z., Zahra N., Sharif R., Hasanuzzaman M. 2020. Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology, 9(7), 177. https://doi.org/10.3390/biology9070177
  • 42. Román-Ponce B., Reza-Vázquez D., Gutiérrez-Paredes S., De Haro-Cruz M., Maldonado-Hernández J., Bahena-Osorio Y., Estrada-De Los Santos P., Tao Wang E., Vásquez-Murrieta M. 2017. Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere, 27(3), 511–26. https://doi.org/10.1016/S1002-0160(17)60347-3
  • 43. Samecka-Cymerman A., Kolon K., Stankiewicz A., Kaszewska J., Mróz L., Kempers A. 2011. Rhizomes and Fronds of Athyrium filix-Femina as Possible Bioindicators of Chemical Elements from Soils over Different Parent Materials in Southwest Poland. Ecological Indicators, 11(5), 1105–11. https://doi.org/10.1016/j.ecolind.2010.12.010
  • 44. Shehata, S.M., Badawy R., Aboulsoud Y. 2019. Phytoremediation of Some Heavy Metals in Contaminated Soil. Bulletin of the National Research Centre, 43(1), 189. https://doi.org/10.1186/s42269-019-0214-7
  • 45. Singh S., Tripathi D., Singh S., Sharma S., Dubey N., Chauhan D., Vaculík M. 2017. Toxicity of Aluminium on Various Levels of Plant Cells and Organism: A Review. Environmental and Experimental Botany, 137(5), 177–93. https://doi.org/10.1016/j.envexpbot.2017.01.005
  • 46. Solomou A.D., Germani R., Proutsos N., Petropoulou M., Koutroumpilas P., Galanis C., Maroulis G., Kolimenakis A. 2022. Utilizing Mediterranean Plants to Remove Contaminants from the Soil Environment: A Short Review. Agriculture, 12(2), 238. https://doi.org/10.3390/agriculture12020238
  • 47. Staroń P., Płecka A., Chwastowski J. 2021. Lead Sorption by Chrysanthemum indicum: Equilibrium, Kinetic, and Desorption Studies. Water, Air, & Soil Pollution, 232(1), 22. https://doi.org/10.1007/s11270-020-04956-6
  • 48. Steliga, T., Kluk D. 2021. Assessment of the Suitability of Melilotus officinalis for Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons (TPH and PAH), Zn, Pb and Cd Based on Toxicological Tests. Toxics, 9(7), 148. https://doi.org/10.3390/toxics9070148
  • 49. Su C., Jiang L., Zhang W. 2014. A Review on Heavy Metal Contamination in the Soil Worldwide: Situation, Impact and Remediation Techniques. Env. Skeptics and Critics, 3(2), 24–38.
  • 50. Syu C., Chen L., Lee D. 2021. The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-contaminated soils. Science of The Total Environment, 759(3), 143943. https://doi.org/10.1016/j.scitotenv.2020.143943
  • 51. Tabrizi L., Mohammadi S., Delshad M., Moteshare B. 2015. Effect of Arbuscular mycorrhizal Fungi on Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress. International Journal of Phytoremediation, 17(12), 1244–52. https://doi.org/10.1080/15226514.2015.1045131
  • 52. Takarina N., Giok T. 2017. Bioconcentration Factor (BCF) and Translocation Factor (TF) of Heavy Metals in Mangrove Trees of Blanakan Fish Farm. Makara Journal of Science, 21(2), 77–81. https://doi.org/10.7454/mss.v21i2.7308
  • 53. Usman K., Al Jabri H., Abu-Dieyeh M., Alsafran M. 2020. Comparative Assessment of Toxic Metals Bioaccumulation and the Mechanisms of Chromium (Cr) Tolerance and Uptake in Calotropis Procera. Frontiers in Plant Science, 11(6), 883. https://doi.org/10.3389/fpls.2020.00883
  • 54. Vodyanitskii Y. 2016. Standards for the Contents of Heavy Metals in Soils of Some States. Annals of Agrarian Science, 14 (3), 257–63. https://doi.org/10.1016/j.aasci.2016.08.011
  • 55. Wang P., Lombi E., Sun S., Scheckel K., Malysheva A., McKenna B., Menzies N., Zhao F., Kopittke P. 2017. Characterizing the Uptake, Accumulation and Toxicity of Silver Sulfide Nanoparticles in Plants. Environmental Science: Nano, 4(2), 448–60. https://doi.org/10.1039/C6EN00489J
  • 56. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. 1.a ed. Vol. 1. 1 1. Springer-Verlag New York. https://ggplot2.tidyverse.org
  • 57. Wu B., Peng H., Sheng M., Luo H., Wang X., Zhang R., Xu F., Xu H. 2021. Evaluation of Phytoremediation Potential of Native Dominant Plants and Spatial Distribution of Heavy Metals in Abandoned Mining Area in Southwest China. Ecotoxicology and Environmental Safety, 220(9), 112368. https://doi.org/10.1016/j.ecoenv.2021.112368
  • 58. Xiang M., Li Y., Yang J., Lei K., Li Y., Li F., Zheng D., Fang X., Cao Y. 2021. Heavy Metal Contamination Risk Assessment and Correlation Analysis of Heavy Metal Contents in Soil and Crops. Environmental Pollution, 278(6), 116911. https://doi.org/10.1016/j.envpol.2021.116911
  • 59. Xu D., Fu R., Wang J., Shi Y., Guo X. 2021. Chemical Stabilization Remediation for Heavy Metals in Contaminated Soils on the Latest Decade: Available Stabilizing Materials and Associated Evaluation Methods − A Critical Review. Journal of Cleaner Production, 321(10), 128730. https://doi.org/10.1016/j.jclepro.2021.128730
  • 60. Xu X., Du X., Wang F., Sha J., Chen Q., Tian G., Zhu Z., Ge S., Jiang Y. 2020. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Frontiers in Plant Science, 11(6), 904. https://doi.org/10.3389/fpls.2020.00904
  • 61. Yakovyshyna T. 2021. Integrated Approach of Phytostabilization for Urban Ecosystem Soils Contaminated with Lead. Environmental Research, Engineering and Management, 77(2), 43–52. https://doi.org/10.5755/j01.erem.77.2.28633
  • 62. Yan, A., Chen Z. 2019. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. International Journal of Molecular Sciences, 20(5), 1003. https://doi.org/10.3390/ijms20051003
  • 63. Yan, A., Wang Y., Tan S., Mohd M., Ghosh S., Chen Z. 2020. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11(4), 359. https://doi.org/10.3389/fpls.2020.00359
  • 64. Zhao, H., Wu Y., Lan X., Yang Y., Wu X., Du L. 2022. Comprehensive Assessment of Harmful Heavy Metals in Contaminated Soil in Order to Score Pollution Level. Scientific Reports, 12(1), 3552. https://doi.org/10.1038/s41598-022-07602-9
  • 65. Zunaidi, A., Hoon L., Metali F. 2021. Transfer of Heavy Metals from Soils to Curly Mustard (Brassica juncea (L.) Czern.) Grown in an Agricultural Farm in Brunei Darussalam. Heliyon, 7(9), e07945. https://doi.org/10.1016/j.heliyon.2021.e07945.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f54cd71-f49c-47c9-b8c8-17c097880a02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.