PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A detailed study of row-trenched holes at the combustor exit on film-cooling effectiveness

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To analyse the effects of cylindrical- and rowtrenched cooling holes with an alignment angle of 90 degrees on the film-cooling effectiveness near the combustor end wall surface at a blowing ratio of 3.18, the current research was done. This research included a 3D representation of a Pratt and Whitney gas turbine engine, which was simulated and analysed with a commercial finite volume package Fluent 6.2.26. The analysiswas done with Reynolds-averaged Navier-Stokes turbulence model on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. In comparison with the baseline case of cooling holes, using row-trenched hole near the end wall surface increased the film-cooling effectiveness 44% in average.
Rocznik
Strony
246--252
Opis fizyczny
Bibliogr. 21 poz., il. kolor., wykr.
Twórcy
  • Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Thermo-fluid, Faculty of Mechanical Engineering, University Technology of Malaysia, Skudai, Johor, Malaysia
Bibliografia
  • [1] Salimi, S., Fazeli, A. and Kianpour, E.: Film Cooling Effectiveness Using Cylindrical and Compound Cooling Holes at the End Wall of Combustor Simulator, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 1(1), 2014, 38-43.
  • [2] Abdullah, K. and Funazaki K.I.: Effects of Blowing Ratio on Multiple Angle Film Cooling Holes, AEROTECH IV Conference, Kuala Lumpur, Malaysia, 2012.
  • [3] Sarkar, S. and Bose, T.K.: Numerical simulation of a 2-D jetcrossflow interaction related to film cooling applications: Effects of blowing rate, injection angle and free-stream turbulence, Sadhana, 20(6), 1995, 915-935.
  • [4] Nasir, H., Ekkad, S.V. and Acharya, S.: Effect of compound angle injection on flat surface film cooling with large streamwise injection angle, Exp Therm Fluid Sci, 25(1-2), 2001, 23-29.
  • [5] Shine, S.R., Sunil Kumar, S. and Suresh, B.N.: Internal wall-jet film cooling with compound angle cylindrical holes, Energ Convers Manage, 68, 2013, 54-62.
  • [6] Hale, C.A., Plesniak, M.W. and Ramadhyani, S.: Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum, J Turbomach, 122(3), 2000, 553-557.
  • [7] Vakil, S.S. and Thole, K.A.: Flow and Thermal Field Measurements in a Combustor Simulator Relevant to a Gas Turbine Aero engine, J Eng Gas Turb Power, 127(2), 2005, 257 -267.
  • [8] Kianpour, E., Sidik, N. A. C. andWahid, M. A.: Cylindrical and Row Trenched Cooling Holes with Alignment Angle of 90º at Different Blowing Ratios, CFD Letters, 5(4), 2013, 165-173.
  • [9] Kianpour, E. and Sidik, N. A. C.: Computational investigation of film cooling from cylindrical and row trenched cooling holes near the combustor endwall, Case Studies in Thermal Engineering, 4, 2014, 76-84.
  • [10] Somawardhana, R.P. and Bogard, D.G.: Effects of obstructions and surface roughness on film cooling effectiveness with and without a transverse trench, J Turbomach, 131(1), 2009, 011010- 1-011010-8.
  • [11] Harrison, K.L., Dorrington, J.R., Dees, J.E., Bogard, D.G. and Bunker, R.S.: Turbine Airfoil Net Heat Flux Reduction With Cylindrical Holes Embedded in a Transverse Trench, J Turbomach, 131(1), 2009, 011012-1-011012-8.
  • [12] Shuping, C.: Film cooling enhancement with surface restructure, PhD Thesis. University of Pittsburgh, 2008.
  • [13] Yiping, L. and Ekkad, S.V.: Predictions of film cooling from cylindrical holes embedded in trenches, 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, California, 2006.
  • [14] Ai, W., Laycock, R.G., Rappleye, D.S., Fletcher, T.H. and Bons, J.P.: Effect of particle size and trench configuration on deposition from fine coal flyash near film cooling holes, Energ Fuel, 25(3), 2011, 1066-1076.
  • [15] Zhang, X. Z. and Hassan, I.: Numerical investigation of heat transfer on film cooling with shaped holes, Int J Heat Fluid Fl, 16(8), 2006, 848-869.
  • [16] Gao, Z., Narzary, D. and Han, J.C.: Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling, J Turbomach, 131(4), 2009, 041004-1-041004-11.
  • [17] Colban, W., Thole, K.A. and Haendler, M.: A comparison of cylindrical and fan-shaped film-cooling holes on a vane end wall at low and high freestream turbulence levels, J Turbomach, 130(3), 2008, 031007-1-031007-9.
  • [18] Saumweber, C., Schulz, A. and Wittig, S.: Free- Stream Turbulence Effects on Film Cooling With Shaped Holes, J Turbomach, 125(1), 2003, 65-73.
  • [19] Saumweber, C. and Schulz, A.: Free-stream effects on the cooling performance of cylindrical and fan-shaped cooling holes, J Turbomach, 134(6), 2012, 061007-1-061007-12.
  • [20] Barigozzi, G., Franchini, G., Perdichizzi, A. and Ravelli, S.: Film cooling of a contoured end wall nozzle vane through fan-shaped holes, Int J Heat Fluid Fl, 31(4), 2010, 576-585.
  • [21] Stitzel, S. and Thole, K.A.: Flowfield computations of combustorturbine interactions relevant to a gas turbine engine, J Turbomach, 126(1), 2004, 122-129.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f51e8f1-c20e-4a45-8a12-b55c7accbe20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.