PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Variation of coal quantity accumulated in the Mississippian to Pennsylvanian coal seams (Upper Silesia and Lublin Coal basins, Poland) : a reflection of changes in climate and CO2 availability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many coal seams of varied thickness and aerial extent occur in the Upper Silesia and Lublin basins within Mississippian and Pennsylvanian coal-bearing deposits. Well-documented data on coal quantity in the seams identified allows visualization of their variation within the stratigraphic succession and analysis of the time-dependent coal accumulation process. Some characteristic features of this variation were observed. Coal seams of the Mississippian age (Serpukhovian, Paralic Series), formed within a near-shore environment, most often constitute small resources. There were only two intervals of increased coal accumulation in seams of >100 million tons, in the lower and uppermost parts of the Paralic Series. Within the Pennsylvanian coal-bearing succession of terrestrial fluvio-lacustrine origin, a specific, wave-like pattern of seam resource variations and four intervals of increased coal accumulation are observed. In the Lublin Coal Basin, the Lublin Beds only, deposited during the Late Bashkirian, are coal-bearing, in which a bell-shaped pattern of seam resource variation in the stratigraphic succession is observed. The location of enhanced coal accumulation events in the stratigraphic succession suggests their repetition at ~1–4 My intervals. The characteristic features of the quantitative variation in these coal seams may be correlated with glacial-interglacial and climate humidity changes, and interpreted as a response to variable volcanogenic CO2 supply.
Słowa kluczowe
Rocznik
Strony
art. no. 8
Opis fizyczny
Bibliogr. 115 poz., rys., tab., wykr.
Twórcy
autor
  • Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
autor
  • AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
Bibliografia
  • 1. Aitken, J.F., 1996. Coal in a sequence stratigraphic framework. The Professional Geologist, 33: 5-9.
  • 2. Berner, R.A., 2003. The long-term carbon cycle, fossil fuels, and atmospheric composition. Nature, 426: 323-326. https://doi.org/10.1038/nature02131
  • 3. Bohacs, K.M., Suter, J.R., 1997. Sequence stratigraphic distribution of coaly rock: fundamental controls and paralic complexes. AAPG Bulletin, 81: 1612-1639. https://doi.org/10.1306/3B05C3FC-172A-11D7-8645000102C1865D
  • 4. Bruckschena, P., Oesmanna, S., Veizerab, J., 1999. Isotope stratigraphy of the European Carboniferous: proxysignals for ocean chemistry, climate and tectonics. Chemical Geology, 161: 127-163. https://doi.org/10.1016/S0009-2541(99)00084-4
  • 5. Bubnoff, S.N., 1960. Basic Problems of Geology (in Russian). Izdatelstvo Moskovskogo Universiteta.
  • 6. Calder, J.H., Gibling, M.R., 1994. The Euramerican coal province: controls on Late Paleozoic peat accumulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 106: 1-21. https://doi.org/10.1016/0031-0182(94)90002-7
  • 7. Castelltort, S., Van den Driessche, J., 2003. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sedimentary Geology, 157: 3-13. https://doi.org/10.1016/S0037-0738(03)00066-6
  • 8. Cecil, C.B., 2003. The concept of autocyclic and allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable. Journal of Sedimentary Research, 77: 13-20. https://doi.org/10.2110/pec.03.77.0013
  • 9. Cecil, C.B., Stanton, R.W., Neuzil, S.G., Dulong, F.T., Ruppert, L.F., Pierce, B.S., 1985. Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the Central Appalachian Basin (U.S.A.). International Journal of Coal Geology, 5: 195-230. https://doi.org/10.1016/0166-5162(85)90014-X
  • 10. Cecil, C.B., DiMichele, W.A., Elrick, S.D., 2014. Middle and Late Pennsylvanian cyclothems, American Midcontinent: Ice-age environmental changes and terrestrial biotic dynamics. C. R. Geoscience, 346: 159-168. https://doi.org/10.1016/j.crte.2014.03.008
  • 11. Chesnel, V., Merino-Tomč, Ó., Fernandez, L.P., Villa, E., Samankassou, E., 2016. Isotopic fingerprints of Milankovitch cycles in Pennsylvanian carbonate platform-top deposits: the Valdorria record, Northern Spain. Terra Nova, 28: 364-373. https://doi.org/101111/ter.12229
  • 12. Chesnut, D.R., Jr., 1994. Eustatic and tectonic control of deposition of the Lower and Middle Pennsylvanian Strata of the Central Appalachian Basin. SEPM Concepts in Sedimentology and Paleontology, 4: 51-64. https://doi.org/10.2110/csp.94.04.0051
  • 13. Chiodini, G., Caliro, S., Aiuppa, A., Avino, R., Granieri, D., Moretti, R., Parello, F., 2011. First 13C/12C isotopic characterisation of volcanic plume CO2. Bulletin of Volcanology, 73: 531-542. https://doi.org/10.1007/s00445-010-0423-2
  • 14. Cleal, C.J., Thomas, B.A., 2005. Paleozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology, 3: 13-31. https://doi.org/10.1111/j.1472-4669.2005.00043.x
  • 15. Cleal, C.J., Opluštil, S., Thomas, B.A., Tenchov, Y. eds., 2009. Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica. Netherlands Journal of Geosciences, 88: 181-278. http://dx.doi.org/10.1017/S0016774600000846
  • 16. Crampton, J.S., Meyers, S.R., Cooper, A., Sadler, P.M., Foote, M., Harte, D., 2018. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles. PANAS, 115: 5686-5691. https://doi.org/10.1073/pnas.1714342115
  • 17. Crowley, T.J., Baum, S.K., 1992. Modeling late Paleozoic glaciation. Geology, 20: 507-510. https://doi.org/10.1130/0091- 7613(1992)020%3C0507:MLPG%3E2.3.CO;2
  • 18. Dai, S., Bechtel, A., Eble, C.F., Flores, R.M., French, D., Graham, I.T., Hood, M.M., Hower, J.C., Korasdis, V.A., Moore, T.A., Puttmann, W., Wei, Q., Zhao, L., O'Keefe, J.M.K., 2020. Recognition of peat depositional environments in coal: a review. International Journal of Coal Geology, 219: 2-67. https://doi.org/10.coal2019.103383.
  • 19. Davydov, V.I., Crowley, J.L., Schmitz, M.D., Poletaev, V.I., 2010. High-precision U-Pb zircon age calibration of the global Carbonifereous time scale and Milankovitch bad cyclicity in the Donetrs Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems, 11: 1-22. https://doi.org/10.1029/2009GC 002736
  • 20. Dembowski, Z., 1972. General information on the Upper Silesian Coal Basin (in Polish with English summary). Prace Instytutu Geologicznego, 61: 9-22.
  • 21. Dembowski, Z., Kotas, A., Malczyk, W., 1964. Identification of coal seams in the Upper Silesian Coal Basin (in Polish with English summary). Prace Instytutu Geologicznego, (not numbered) 1-72.
  • 22. Dembowski, Z., Unrug, R., 1970. A statistical study of cyclic sedimentation in the Łaziska beds, Upper Silesia Coal Basin (in Polish with English summary). Annales de la Societe Geologique de Pologne, 40: 63-110.
  • 23. DiMichele, W.A., 2014. Wetland-dryland vegetational dynamics the Pennsylvanian ice age tropics. International Journal of Plant Sciences, 175: 123-164. https://doi.org/10.1086/675235
  • 24. DiMichele, W.A., Cecil, C.B., Montanez, I.P., Falcon-Lang, H.J., 2010. Cyclic changes in Pennsylvanian paleoclimate and effects on dynamics in tropical Pangea. International Journal of Coal Geology, 83: 329-344. https://doi.org/10.1016/j.coal.2010.01.007
  • 25. Doktor, M., 2007. Conditions of accumulation and sedimentary architecture of the Upper Westphalian Krakow Sandstone series (Upper Silesian Coal Basin, Poland). Annales Societatis Geologorum Poloniae, 77: 219-268.
  • 26. Doktor, M., Gradziński, R., 1985. Alluvial depositional environment of coal-bearing „Mudstone series” (Upper Carboniferous, Upper Silesian Coal Basin) (in Polish with English summary). Studia Geologica Polonica, 82: 5-67.
  • 27. Doktor, M., Gradziński, R., 2000. Środowiska sedymentacji i systemy depozycyjne węglonośnej sukcesji Zagłębia Górnośląskiego (in Polish). XXIII Sympozjum Geologia Formacji Węglonośnych Polski: 29-52.
  • 28. Doktor, M., Gradziński, R., Słomka, T., 1997. Cyclicity of Upper Carboniferous coal-bearing fluvial sediments: example from the Upper Silesia, Po land. Prace Państwowego Instytutu Geologicznego, 157 (part 2): 53-61.
  • 29. Doktorowicz-Hrebnicki, S., Bocheński, T., 1952. Podstawy i wyniki paralelizacji pokładów węgla w Zagłębiu Górnośląskim (in Polish). Geologiczny Biuletyn Informacyjny, 1: 13-14.
  • 30. Dyer, B., Maloof, A.C., Higgins, J.A., 2015. Glacioeustasy, meteoric diagenesis, and the carbon cycle during the Middle Carboniferous. Geochemistry, Geophysics, Geosystems, 16: 3383-3399. https://doi.org/10.1002/2015/GC006002
  • 31. Eros, J.M., Montanez, I.P., Osleger, D.A., Davydov, V.I., Nemyrovska, T.I., Poletaev, V.I., Zhykalya, M.V., 2012. Sequence stratigraphy and onlap history of Donets Basin, Ukraine: insight into Carboniferous Icehouse dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 313-314: 1-25. https://doi.org/10.1016/j.paleo.2011.08.019.
  • 32. Falcon-Lang, H.J., 2004. Pennsylvanian tropical rain forests respond to glacial-interglacial rhythms. Geology, 32: 689-692. https://doi.org/10.1130/G20523.1
  • 33. Falcon-Lang, H.J., DiMichele, W.A., 2010. What happened to the coal forests during Pennsylvanian during Pennsylvanian glacial phases?Palaios,25: 611-617. https://doi.org/10.2110/palo.2009.p09-162r
  • 34. Feulner, G., 2017. Formation of most of our coal brought Earth close to global glaciation. PANAS, 114: 11333-11337. https://doi.org/10.1073/pnas.1712062114
  • 35. Fielding, Ch.R., Frank, T.D., Isbell, J.L., 2008a. The late Paleozoic ice age - a review of current understanding and synthesis of global climate patterns. GSA Special Paper, 441: 343-354, https://doi.org/10.1130/2008.2441(23)
  • 36. Fielding, Ch.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T., Roberts, J., 2008b. Stratigraphic imprint of the Late Paleozoic ice age in eastern Australia: a record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, 165: 129-140. https://doi.org/10.1144/0016-76492007-036
  • 37. Frank, T.D., Birgenheier, L.P., Montanez, I.P., Fielding, C.R., Rygel, M.C., 2008. Late Paleozoic dynamics revealed by comparison of ice-proximal stratigraphic and ice-distal isotopic records. GSA Special Paper, 441: 1-12. https://doi.org/10.1130/2008.2441(23)
  • 38. Gastaldo, R.A., Demko, T.M., Liu, Y., 1993. Application of sequence and genetic stratigraphic concepts to Carboniferous coal-bearing strata: an example from Black Warrior basin, USA. Geologisches Rundschau, 82: 212-226. http://dx.doi.org/10.1007/BF00191827
  • 39. Gastaldo, R.A., DiMichele, W.A., Pfefferkorn, H.W., 1996. Out of the icehouse into the greenhouse: a Late Paleozoic analog for modern global vegetational change. GSA Today, 10: 1-7.
  • 40. Gastaldo, R.A., Purkynova, E., Šimůnek, Z., 2007. Megafloral perturbation across the Enna marine zone in the Upper Silesian Basin attests to late Mississippian (Serpukhovian) deglaciation and climate change. Palaios, 24: 351-366. https://doi.org/10.2110/palo.2007.p07-027r
  • 41. Gastaldo, R.A., Purkynova, E., Šimůnek, Z., Schmitz, M.D., 2009. Ecological persistence in the Late Mississippian (Serpukhovian, Namurian A) megafloral record in the Upper Silesian Basin, Czech Republic. Palaios, 24: 336-350. https://doi.org/10.2110/palo.2008.p08.084r
  • 42. Gradziński, R., 1994. O systemie numeracji pokładów węgla w Górnośląskim Zagłębiu Węglowym i jego stosowaniu (in Polish). Przegląd Geologiczny, 42: 347-348.
  • 43. Gradziński, R., Doktor, M., 1996. Heterolithic tidal deposits in the Paralic Series, Upper Carboniferous of the Upper Silesia Coal Basin, southern Poland (in Polish with English summary). Przegląd Geologiczny, 44: 1089-1094.
  • 44. Gradziński, R., Doktor, M., Słomka, T., 1995. Depositional environments of the coal bearing Krakow Sandstone Series (Upper Westphalian), Upper Silesia, Poland. Studia Geologica Polonica, 108: 149-170.
  • 45. Gradziński, R., Doktor, M., Kędzior, A., 2005. Sedimentation of the coal-bearing succession in the Upper Silesia Coal Basin: research trends and the current state of knowledge (in Polish with English summary). Przegląd Geologiczny,53: 734-741.
  • 46. Grossman, E.L., Bruckschen, P., Mii, H-S., Chuvashov, B., Yac Yacey, T.E., Veizer, J., 2002. Carboniferous paleoclimate and carboniferous paleoclimate and global change: isotopic evidence from Russian Platform. In: Carboniferous Stratigraphy and Paleogeography in Eurasia. Institute of Geology and Geochemistry, Russian Academy of Science, Urals Branch, Ekaterinburg: 61-71.
  • 47. Gulbranson, E.L., Montanez, I.P., Schmitz, M.D., Limarino, C.O., Isbell, J.L., Marenssi, S.A., Crowley, J.L., 2010. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. GSA Bulletin, 122: 1480-1498. http://dx.doi.org/10.1130/B30025.1
  • 48. Hamilton, D.S., Tadros, N.Z., 1994. Utility of coal seams as genetic stratigraphic sequence boundaries in nonmarine bas ins: an example from the Gunnedah Basin, Australia. AAPG Bulletin, 78: 267-286. https://doi.org/10.1306/BDFF9082-1718-11D7-8645000102C1865D
  • 49. Hampson, G., Stollhofen, H., Flint, S., 1999. A sequence stratigraphic model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr district, north-west Germany. Sedimentology, 46: 1199-1231. https://doi.org/10.1046/j.1365-3091.1999.00273.x
  • 50. Haq, B.U., Schutter, S.R., 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64-68. http://dx.doi.org/10.1126/science.1161648
  • 51. Heckel, P.H., 1990. Evidence for global (glacial-eustatic) control over Upper Carboniferous (Pennsylvanian) cyclothemes in midcontinent North America. Geological Society Special Publications, 55: 35 https://doi.org/10.1144/GSL.SP.1990.055.01.02
  • 52. Heckel, P.H., 1994. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic effects. SEPM Concepts in Sedimentology and Paleontology, 4: 65-87. https://doi.org/10.2110/csp.94.04.0065
  • 53. Horton, D.E., Poulsen, Ch.J., Pollard, D., 2010. Influence of high-latitude vegetation feedbacks on late Paleozoic glacial cycles. Nature Geoscience, 3: 577. https://doi.org/10.1038/NGEO922
  • 54. Isbell, J.L., Miller, M.F., Wolfe, K.L., Lenaker, P.A., 2003. Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of northern hemisphere cyclothems? GSA Special Paper, 370: 5-24. https://doi.orq/10.1130/0-8137-2370-1.5
  • 55. Isbell, J.L., Henry, L.C., Gulbrason, E.L., Limarino, C.O., Fraiser, M.L., Koch, Z.J., Ciccioli, P.L., Dineen, A.A., 2012. Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22: 1-19. https://doi.org/10.1016/j.gr.2011.11.005
  • 56. Izart, A., Vachard, D., 1994. Subsidence tectonique, eustatisme et contrfile des sequences dans les bassins namuriens et westphaliens de l'Europe de l'ouest, de la CEI et des USA. Bulletin de la Société Géologique de France, 165: 499-514.
  • 57. Jirásek, J., Hylova, L., Sivek, M., Jureczka, J., Martinek, K., Sykorova, I., Schmitz, M., 2013. The Main Ostrava Whetstone: composition, sedimentary processes, paleogeography and geochronology of major Mississippian volcaniclastic unit of the Upper Silesian Basin (Poland and Czech Republic). International Journal of Earth Sciences, 102: 989-1006. https://doi.org/10.1038/NGEO922
  • 58. Jirásek, J., Opluštil, S., Sivek, M., Schmitz, M., Abels, H.A., 2018. Astronomical forcing of Carboniferous paralic sedimentary cycles in the Upper Silesian Basin, Czech Republic (Serpukhovian, latest Mississippian): new radiometric ages afford an astronomical age model for European biozonation and substages. Earth-Science Reviews, 177: 715-741. https://doi.org/10.1016/j.earscirev.2017.12.005
  • 59. Jureczka, J., 2020. Upper Silesian Coal Basin In: Geological Atlas of Poland (eds. J. Nawrocki and A. Becker): 91. PIG-BIP, Warszawa.
  • 60. Jureczka, J., Kotas, A., 1995. Upper Silesian Coal Basin. Prace Państwowego Instytutu Geologicznego, 148: 164-173.
  • 61. Jureczka, J., Ihnatowicz, A., Kotlarek, P., Krieger, W., Młynarczyk, M., 2020. Węgiel kamienny (hard coal) (in Polish). In: Szamałek K., Szuflicki M., Mizerski W. (eds.). 2020. Bilans perspektywicznych zasobów kopalin Polski. Państwowy Instytut Geologiczny, Warszawa, 99-112.
  • 62. Kędzior, A., 2008. Depositional architecture of the Zabrze Beds (Namurian B) within the Main Anticline of the Upper Silesia Coal Basin, Poland. Studia Geologica Polonica, 129: 131-156
  • 63. Kędzior, A., 2016. Reconstruction of an early Pennsylvanian fluvial system based on geometry of sandstone bodies and coal seams: the Zabrze beds of the Upper Silesia Coal Basin, Poland. Annales Societatis Geologorum Poloniae, 86: 437-472. https://doi.org/10.14241/asgp.2016.020
  • 64. Kędzior, A., Opluštil, S., 2009. Upper Silesia. Netherlands Journal of Geosciences, 88: 198-199. https://doi.org/10.1017/s0016774600001232
  • 65. Kędzior, A., Gradziński, R., Doktor, M., Gmur D., 2007. Sedimentary history of Mississippian to Pennsylvanian coal-bearing succession: an example from the Upper Silesia Coal Basin, Poland. Geological Magazine, 144: 487-496. https://doi.org/10.1017/S001675680700341X
  • 66. Klein, G.Dev., Willard, D.A., 1989. Origin of the Pennsylvanian coal-bearing cyclothems of North America. Geology, 17: 152-155. https://doi.org/10.1130/0091-7613(1989)017<0152:OOTPCB>2.3.CO;2
  • 67. Kotas, A., 1985. Structural evolution of the Upper Silesian Coal Basin (Poland). X Congress International on Structural Geologyof Carboniferous, C.R. 3: 459-469.
  • 68. Kotas, A., 1995. Upper Silesian Coal Basin lithostratigraphy and sedimentologic-paleogeographic development. Prace Państwowego Instytutu Geologicznego, 148: 124-134.
  • 69. Kotas, A., Malczyk, W., 1972. The Paralic Series of the Lower Namurian Stage of the Upper Silesian Coal Basin (in Polish with English summary). Prace Instytutu Geologicznego, 61: 329-426.
  • 70. Kotasowa, A., 1979. Phytostratigraphy of the uppermost part of coal measures section in the Upper Silesian Coal Basin (in Polish with English summary). Geological Quarterly, 23 (4): 525-532.
  • 71. Kowalski, W.M., Mati, K., 1971. Characteristics of sandstones of the Jaklovec Beds in the Rybnik region of the Upper Silesian Coal Basin (Poland) (in Polish with English summary). Prace Geologiczne, 69: 1-83.
  • 72. KozłowskA, A., Waksmundzka, M.I., 2020. Diagenesis, sequence stratigraphy and reservoir quality of the Carboniferous deposits of the southeastern Lublin Basin (SE Poland). Geological Quarterly,64 (2): 422-429. https://doi.org/10.7306/gq.1532
  • 73. Krzeszowska, E., 2015. New data on the development of the Dunbarella marine marker horizon in the Lublin Coal Basin (Poland). International Journal of Coal Geology, 150-151: 170-180. https://doi.org/10.1016/j.coal.2015.08.010
  • 74. Krzeszowska, E., 2019. Geochemistry of the Lublin Formation from the Lublin Coal Basin: Implications for weathering intensity, paleoclimate and provenance. International Journal of Coal Geology, 216:103306, https://doi.org/10.1016/j.coal.2019.103306
  • 75. Lipiarski, I., Muszyński, M., Stolecki, J., 1993. Tonstein from the coal seam no. 385 in the Lublin Formation (Lower Westphalian) from the Lublin Coal Basin. Geological Quarterly, 37 (4): 537-564.
  • 76. Lucas, S.G., Schneider, J.W., Nikolaeva, S., Wang, X., 2022. The Carboniferous timescale: an introduction. Geological Society Special Publications, 512: 1-17. https://doi.org/10.1144/SP512-2021-160
  • 77. Martinec, P., Dopita, M., 1997. Upper Carboniferous coal tonsteins and related pyroclastic rocks in the Upper Silesian coal basin (Czech Republic). Prace Państwowego Instytutu Geologicznego, 157: 275-280.
  • 78. Mati K., 1971. Faunal horizons in the Poruba and Jaklovec beds (Upper namurian A) of the western part of the Upper Silesian Coal Basin (in Polish with English summary). Prace Geologiczne Oddziału PAN Kraków-Warszawa, 67.
  • 79. Mii, H.S., Grossman, E.L., Yancey, T.E., Chuvashov, B., Egorov, A., 2001. Isotopic records of brachiopod shells from the Russian Platform-evidence for the onset of mid-Carboniferous glaciation. Chemical Geology, 175: 133-147. https://doi.org/10.1016/S0009-2541(00)00366-1
  • 80. Montanez, I.P., 2022. Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record. Geological Society Special Publications, 512: 233-245. https://doi.org/10.1144/SP512-2021-124
  • 81. Montanez, I.P., Poulsen, CH.J., 2013. The late Paleozoic ice age: An evolving paradigm. Annual Review of Earth and Planetary Science, 41: 629-656. https://doi.org/10.1146/ANNUREV.EARTH.031208.100118
  • 82. Moontanez, I.P., Tabor N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, Ch., R., Isbell, J.L., Birgenheier, L.P., RygeL, M.C., 2007. CO2 forced climate and vegetation instability during Late Paleozoic deglaciation. Science, 315: 87-91. https://doi.org/10.1126/science.1134207
  • 83. Montanez, I.P., MCEwain, J.C., Poulsen, CH.J., White, J.D., DiMichele, W.A., Wilson, J.P., Griggs, G., Hren, M.T., 2016. Climate, pCO2 and terrestrial carbon cycle linkages during late Paleozoic glacial-interglacial cycles. Nature Geosciences, 9: 824-828. https://doi.org/10.1038/NGEO2822
  • 84. NIEĆ, M., Młynarczyk, M., 2014. Management of hard coal resources and reserves in Poland (in Polish with English summary). Studia, Rozprawy, Monografie MEERI PAS, 187, Kraków.
  • 85. Oyarzun, R., Doblas, M., Ruiz, J.L., Cebria, J.M., Youbi, N., 1999. Tectonically induced icehouse-greenhouse climate oscillations during the transition from Variscan to the Alpine cycle (Carboniferous to Triassic). Bulletin de la Société Geologique de France, 170: 3-11.
  • 86. PAszkowski, M., Jachowicz, M., Michalik, M., Teller, L., Uchman, A., Urbanek, Z., 1995. Composition, age and provenance of gravel-sized clastics from the Upper Carboniferous of Upper Silesia Coal Basin (Poland). Studia Geologica Polonica, 108: 45-127.
  • 87. Pfefferkorn, H.W., Gastaldo, R.A., DiMichele, W.A., 2017. Impact of an icehouse climate interval on tropical vegetation and plant evolution. Stratigraphy, 14: 365-376. https://doi.org/10.2904/strat.14.1-4.365-376
  • 88. Philiips, T.L., Peppers, R.A., 1984. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence. International Journal of Coal Geology, 3: 205-255. https://doi.org/10.1016/0166-5162(84)90019-3
  • 89. Pointon, M.A., Chew, D.M., Ovtchaeova, G., Sevastopulo, D., Crowley, Q.G., 2012. New high-precision U-Pb dates from Western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correlation. Journal of the Geological Society, 169: 713-721. https://doi.org/10.1144/jgs2011-092
  • 90. Porzycki, J., Zdanowski, A., 1995. Lublin Coal Basin. Prace Państwowego Instytutu Geologicznego, 148: 157-164.
  • 91. Probierz, K., Mmarcisz, M., Sobolewski, A., 2012. Od torfu do węgli koksowych monokliny Zofijówki w obszarze Jastrzębia (południowo-zachodnia część Górnośląskiego Zagłębia Węglowego) (in Polish). Instytut Chemicznej Przeróbki Węgla, Zabrze.
  • 92. Richards, B.C., 2013. Current status of the international Carboniferous time scale. New Mexico Museum of Natural History and Science Bulletin, 60: 348-353. http://carboniferous.stratigra- phy.org/files/20130823124207476.pdf
  • 93. Ross, CH.A., Ross, J.R.P., 1985. Late Paleozoic depositional sequences are synchronous and worldwide. Geology, 13: 194-197. https://doi.org/10.1130/0091-7613(1985)13<194:LPDSAS>2.0. CO;2
  • 94. Ross, CH.A., Ross, J.R.P., 1987. Late Paleozoic sea levels and depositional sequences. Western Washington University Geology Faculty Publications, 61: 136-149. https://cedar.www.edu./geology-facpuibs/61
  • 95. Ruban, D.A., 2012. Comment on, 2012 “Sequence stratigraphy and onlap history of the Donets Basin, Ukraine: insight into Carboniferous Icehouse dynam ics” by J.M. Eros, I.P. Montaňez, D.A. Osleger, V.I. Davydov, T.I. Nemyrovska, V.I. Poletaev and M.V. Zhykalyak [Paleogeography, Paleoclimatology, Paleoecology, 313-314: 1-25]. Palaeogeography, Palaeoclimatology, Palaeo- ecology, 363-364: 184-186. https://doi.org/10.1016/j.palaeo.2011.08.019
  • 96. Ryszka, J., Gabzdyl, W., 1986. Tonsteins and other tufogenic rocks as the indicators, their significance for the recognition and mining of coal beds in the Upper Silesian Basin (in Polish with English summary). Zeszyty Naukowe Politechniki Śląskiej, Górnictwo, 149: 519-533.
  • 97. Saltzman, M.R., 2003. Late Paleozoic ice age: oceanic gateway or pCO2? Geology, 31: 151-154. https://doi.org/10.1130/0091-7613(2003)031%3C0151:LPIAOG%3E2.0.CO;2
  • 98. Scheffler, K., Hoemes, S., Schwark, L., 2003. Global changes during Carboniferous-Permian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology, 31: 605-608. https://doi.org/10.1130/0091-7613(2003)031%3C0605:GCDCGO%3E2.0.CO;2
  • 99. Scott, A.C., Stephens, R.S., 2015. British Pennsylvanian (Carboniferous) coal-bearing sequences: where is the time? Geological Society Special Publications, 404: 283-302. https://doi.org//10.1144/SP404.14
  • 100. Sermet, E. (ed.), 2018. Baza zasobowa węgla kamiennego w Polsce dla podziemnego zgazowania (in Polish). Wyd. GIG, Katowice.
  • 101. Shaviv, N.J., 2002. Cosmic ray diffusion from the galactic spiral arms, iron meteorites and possible climatic connections. Physical Review Letters, 89: 1-4. https://doi.org/10.1103/PhysRevLett.89.051102
  • 102. Skompski, S., 1996. Stratigraphic position and facies significance of the Limestone beds in the subsurface Carboniferous succession of the Lublin Upland. Acta Geologica Polonica, 46: 171-268.
  • 103. Skompski S., 2003. Onset of the late Palaeozoic Gondwanan glaciation and its sedimentary record in the Polish Carboniferous succession (in Polish with English summary). Przegląd Geologiczny, 51: 658-662
  • 104. Stopa, S.Z., 1968. Une classification anthracogénetique des formations houilleféres (in Polish with French summary). Prace Geologiczne, 49.
  • 105. Świerczewska, A., 1995. Composition and provenance of Carboniferous sandstones from the Upper Silesia Coal Basin (Poland). Studia Geologica Polonica, 108: 27-43.
  • 106. Tabor, N.J., Poulsen, Ch.J., 2008. Paleoclimate across the Late Pennsylvanian-Early Permian tropical paleolatitudes: A review of climate indicators, their distribution, and relation to paleo- physiographic climate factors. Palaeogeography, Palaeo- climatology, Palaeoecology, 268: 293-310. https://doi.org/10.1016/j.paleo.2008.03.052
  • 107. Tucker, G.E., 1997. Drainage basin responses to climate change. Water Resources Research, 33: 2031-2047.
  • 108. Valero Garces, B.L., Gierlowski-Kordesch, E., Brago, W.A., 1997. Pennsylvanian continental cyclothem development: no evidence of direct climatic control in the Upper Freeport Formation (Allegheny Group) of Pennsylvania (northern Appalachian Basin. Sedimentary Geology, 109: 305-319. https://doi.org/10.1016/S0037-0738(96)00071-1
  • 109. Van den Belt, F.J.G., Van Hoof, T.B., Pagnier, H.J.M., 2015. Revealing the hidden Milankovitch record from Pennsylvanian cyclothem successions and implications regarding late Paleozoic chronology terrestrial-carbon (coal) storage. Geosphere, 11: 1062-1076. https://doi.org/10.1130/GES01177.1
  • 110. Veevers, I.J., Powell, C.Mca., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected transgressive-regressive depositional sequences in Euramerica. GSA Bulletin, 98: 475-487. https://doi.org/10.1130/0016-7606(1987)98%3C475:LPGEIG%3E2.0.CO;2
  • 111. Wagner, R. ed., 2008. The Stratigraphic Table of Poland. Państwowy Instytut Geologiczny, Warszawa.
  • 112. Waksmundzka, M.I., 2010. Sequence stratigraphy of Carboniferous paralic deposits in the Lublin Basin (SE Poland). Acta Geologica Polonica, 60: 557-597.
  • 113. Waksmundzka, M., Ptak, A., Kędzior, A., Opluštil, S., 2009. Lublin-Volhynia. Netherlands Journal of Geosciences, 88: 190-191. https://doi.org/10.1017/S0016774600000846
  • 114. Wilson, J.P., Montanez, I.B., White, J.D., DiMichele, W.A., McElvain, J.C., Poulsen, Ch.J., Hren, M.T., 2017. Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing climate. New Phytologist, 215: 1333-1353. https://doi.org/10.1111/nph.14700
  • 115. Wright, V.P., Vanstone, S.D., 2001. Onset of Late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding. Journal of the Geological Society, 158: 579-582. https://doi.org/10.1144/jgs.158.4.579
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f4e85e0-834c-4132-b857-76f1d1b8410c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.