PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strong convergence of an inertial extrapolation method for a split system of minimization problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we propose an inertial extrapolation-type algorithm for solving split system of minimization problems: finding a common minimizer point of a finite family of proper, lower semicontinuous convex functions and whose image under a linear transformation is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. The strong convergence theorem is given in such a way that the step sizes of our algorithm are selected without the need for any prior information about the operator norm. The results obtained in this article improve and extend many recent ones in the literature. Finally, we give one numerical example to demonstrate the efficiency and implementation of our proposed algorithm.
Wydawca
Rocznik
Strony
332--351
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Department of Mathematics, Debre Berhan University, Debre Berhan, P.O. Box 445, Ethiopia
  • Department of Mathematics, Naresuan University, Phitsanulok 65000, Thailand
Bibliografia
  • [1] Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems 21(2005), no. 6, 2071-2084, DOI: https://doi.org/10.1088/0266-5611/21/6/017.
  • [2] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8(1994), no. 2, 221-239, DOI: https://doi.org/10.1007/BF02142692.
  • [3] Y. Dang, Y. Gao, and L. Li, Inertial projection algorithms for convex feasibility problem, J. Syst. Eng. Electron. 23(2012), no. 5, 734-740, DOI: https://doi.org/10.1109/JSEE.2012.00090.
  • [4] G. López, V. Martín-Márquez, F. Wang, and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems 28(2012), no. 8, 85-104, DOI: https://doi.org/10.1088/0266-5611/28/8/085004.
  • [5] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problems 21(2005), no. 5, 1655–1665, DOI: https://doi.org/10.1088/0266-5611/21/5/009.
  • [6] A. Latif, J. Vahidi, and M. Eslamian, Strong convergence for generalized multiple-set split feasibility problem, Filomat 30(2016), no. 2, 459-467, DOI: https://doi.org/10.2298/FIL1602459L.
  • [7] E. Masad and S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert space, J. Nonlinear. Convex Anal. 8(2007), no. 3, 367–371.
  • [8] H. K. Xu, A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem, Inverse Problems 22(2006), no. 6, 2021-2034, DOI: https://doi.org/10.1088/0266-5611/22/6/007.
  • [9] A. G. Gebrie and R. Wangkeeree, Proximal method of solving split system of minimization problem, J. Appl. Math. Comput. 63(2020), 107–132, DOI: https://doi.org/10.1007/s12190-019-01310-w.
  • [10] A. G. Gebrie and R. Wangkeeree, An iterative scheme for solving split system of minimization problems, J. Comput. Anal. Appl. 28(2020), no. 6, 968–980.
  • [11] A. G. Gebrie and R. Wangkeeree, Parallel proximal method of solving split system of fixed point set constraint minimization problems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(2020), no. 1, DOI: https://doi.org/10.1007/s13398-019-00758-6.
  • [12] Y. C. Tang and L. W. Liu, Several iterative algorithms for solving the split common fixed point problem of directed operators with applications, Optimization 65(2016), no. 1, 53–65, DOI: https://doi.org/10.1080/02331934.2014.984708.
  • [13] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal. 16(2009), no. 2, 587–600.
  • [14] A. Abkar and E. Shahrosvand, The split common fixed point problem of two infinite families of demicontractive mappings and the split common null point problem, Filomat 31(2017), no. 12, 3859–3874, DOI: https://doi.org/10.2298/FIL1712859A.
  • [15] M. M. Alves and B. F. Svaiter, A proximal-Newton method for unconstrained convex optimization in Hilbert spaces, Optimization 67(2018), no. 1, 67–82, DOI: https://doi.org/10.1080/02331934.2017.1389942.
  • [16] P. E. Gill and W. Murray, Newton-type methods for unconstrained and linearly constrained optimization, Math. Program. 7(1974), no. 1, 311–350, DOI: https://doi.org/10.1007/BF01585529.
  • [17] R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg, 2009.
  • [18] B. Martinet, Régularisation d’inéquations variationnelles par approximations successives, R.I.R.O. 4(1970), no. R3, 154–158, DOI: https://doi.org/10.1051/m2an/197004R301541.
  • [19] B. Martinet, Détermination approchée d’un point fixe d’une application pseudo-contractante, CR Acad. Sci. Paris. 274(1972), no. 2, 163–165.
  • [20] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14(1976), no. 5, 877–898, DOI: https://doi.org/10.1137/0314056.
  • [21] A. Moudafi and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett. 8(2014), no. 7, 2099–2110, DOI: https://doi.org/10.1007/s11590-013-0708-4.
  • [22] J. M. Hendrickx and A. Olshevsky, Matrix p-norms are NP-hard to approximate if p≠1,2,∞, SIAM J. Matrix Anal. Appl. 31(2010), no. 5, 2802–2812.
  • [23] M. Abbas, M. AlShahrani, Q. H. Ansari, O. S. Iyiola, and Y. Shehu, Iterative methods for solving proximal split minimization problems, Numer. Algorithms 78(2018), no. 1, 193–215, DOI: https://doi.org/10.1007/s11075-017-0372-3.
  • [24] Y. Shehu, G. Cai, and O. S. Iyiola, Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015(2015), art. 123, DOI: https://doi.org/10.1186/s13663-015-0375-5.
  • [25] Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, J. Fixed Point Theory Appl. 19(2017), no. 4, 2483–2510, DOI: https://doi.org/10.1007/s11784-017-0435-z.
  • [26] Y. Shehu and O. S. Iyiola, Strong convergence result for proximal split feasibility problem in Hilbert spaces, Optimization 66(2017), no. 12, 2275–2290, DOI: https://doi.org/10.1080/02331934.2017.1370648.
  • [27] Y. Shehu and O. S. Iyiola, Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems, Optimization 67(2018), no. 4, 475–492, DOI: https://doi.org/10.1080/02331934.2017.1405955.
  • [28] Y. Shehu and O. S. Iyiola, Nonlinear iteration method for proximal split feasibility problems, Math. Meth. Appl. Sci. 41(2018), no. 2, 781–802.
  • [29] Y. Shehu and F. U. Ogbuisi, Convergence analysis for proximal split feasibility problems and fixed point problems, J. Appl. Math. Comp. 48(2015), no. 1-2, 221–239, DOI: https://doi.org/10.1007/s12190-014-0800-7.
  • [30] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys. 4(1964), no. 5, 1–17, DOI: https://doi.org/10.1016/0041-5553(64)90137-5.
  • [31] H. Attouch, J. Peypouquet, and P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SSIAM J. Optim. 24(2014), no. 1, 232–256, DOI: https://doi.org/10.1137/130910294.
  • [32] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2(2009), no. 1, 183–202, DOI: https://doi.org/10.1137/080716542.
  • [33] C. Chen, R. H. Chan, S. Ma, and J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci. 8(2015), no. 4, 2239–2267, DOI: https://doi.org/10.1137/15100463X.
  • [34] P. Ochs, T. Brox, and T. Pock, iPiasco: Inertial proximal algorithm for strongly convex optimization, J. Math. Imaging Vision. 53(2015), no. 2, 171–181, DOI: https://doi.org/10.1007/s10851-015-0565-0.
  • [35] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer International, New York, 2011.
  • [36] H. Brezis, Operateurs Maximaux Monotones: Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, North-Holland Mathematics Studies, vol. 5, American Elsevier Publishing Company, Inc., New York, 1973.
  • [37] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149(1970), no. 1, 75–88, DOI: https://doi.org/10.2307/1995660.
  • [38] B. Lemaire, Which fixed point does the iteration method select?, in: P. Gritzmann, R. Horst, E. Sachs, R. Tichatschke, (eds), Recent Advances in Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 452, Springer, Berlin, Heidelberg, pp. 154–167, DOI: https://doi.org/10.1007/978-3-642-59073-3_11
  • [39] H. K. Xu, Iterative algorithms for nonlinear operators, Lond. Math. Soc. 66(2002), no. 1, 240–256.
  • [40] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16(2008), no. 7–8, 899–912, DOI: https://doi.org/10.1007/s11228-008-0102-z.
  • [41] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63(1994), 123–145.
  • [42] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6(2005), no. 1, 117–136.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f484bb1-3c85-4dbd-8297-a6634cc02cf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.