Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, oxidation properties of austenitic 316L stainless steel powder and sintered porous support were investigated at the temperature range of ~600-750 °C for 100 hours in ambient air. Oxidation kinetics was determined by continuous thermogravimetry and analyzed employing parabolic rate law. It was observed that oxidation leads to the formation of an oxide scale, with substantial oxidation occurring at ≥ 650 °C in the powder. The porous steel support was fabricated by tape casting method with two distinct pore former concentrations. The microstructural features of both the powder and support were investigated by X-ray diffractometry and scanning electron microscopy coupled with energy-dispersive X-ray analysis. The mechanical properties of the metal support were examined before and after oxidation via a microhardness test. The effect of porosity on the resulting properties of the metal support was also highlighted. In summary, 316L stainless steel support suits SOCs applications below 600 °C.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
10--18
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
- Faculty of Electronics, Telecommunications, and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
autor
- Faculty of Electronics, Telecommunications, and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
autor
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
autor
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
autor
- Institute for Manufacturing Technology of Ceramic Components and Composites, University of Stuttgart, 70569 Stuttgart, German
autor
- Faculty of Electronics, Telecommunications, and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland
Bibliografia
- 1. Tucker M.C. Development of High power density metal-supported solid oxide fuel cells, Energy Technology 2017; 5(12): 2175–2181, doi: 10.1002/ ente.201700242.
- 2. Dogdibegovic E., Wang R., Lau G.Y., and Tucker M.C. High performance metal-supported solid oxide fuel cells with infiltrated electrodes, J Power Sources 2019; 410–411: 91–98, doi: 10.1016/j. jpowsour.2018.11.004.
- 3. Reisert M., Berova V., Aphale A., Singh P., and Tucker M.C. Oxidation of porous stainless steel supports for metal-supported solid oxide fuel cells, Int J Hydrogen Energy 2020; 45(55): 30882–30897, doi: 10.1016/j.ijhydene.2020.08.015.
- 4. Stange M., Denonville C., Larring Y., Haavik C., Brevet A., Montani A., Sicardy O., Mougin J., Larsson P.-O. Coating developments for metal-supported solid oxide fuel cells, ECS Trans 2013; 57(1): 511–520, doi: 10.1149/05701.0511ecst.
- 5. Zhou Z., Nadimpalli V.K., Pedersen D.B., and Esposito V. Degradation mechanisms of metal-supported solid oxide cells and countermeasures: A review, Materials 2021; 14(11): 3139, doi: 10.3390/ma14113139.
- 6. Stefan E., Denonville C., Larring Y., Stange M., and Haugsrud R. Oxidation study of porous metal substrates for metal supported proton ceramic electrolyzer cells, Corros Sci 2020; 164: 108335, doi: 10.1016/j.corsci.2019.108335.
- 7. Koszelow D., Molin S., Karczewski J., Marone F., and Makowska M. Morphology changes in Fe-Cr porous alloys upon high-temperature oxidation quantified by X-ray tomographic microscopy, Mater Des 2022; 215: 110492, doi: 10.1016/j. matdes.2022.110492.
- 8. Zhou Z., Nadimpalli V.K., Lalwani A.R., Wang S., Shang Y., Pan Z., Pedersen D.B., Esposito V. Oxidation inhibition of 3D printed porous steel by ceria-activated multilayers, Corros Sci 2023; 214, 111010, doi: 10.1016/j.corsci.2023.111010.
- 9. Molin S., Kusz B., Gazda M., and Jasinski P. Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures, J Power Sources 2008; 181(1): 31–37, doi: 10.1016/j. jpowsour.2007.10.009.
- 10. Huntz A.M. Arabolic laws during high temperaturę oxidation: relations with the grain size and thickness of the oxide,” J Mater Sci Lett 1999; 18(24): 1981–1984, doi: 10.1023/A:1006677631548.
- 11. Karczewski J., Dunst K.J., Jasinski P., and Molin S. High temperature corrosion and corrosion protection of porous Ni22Cr alloys, Surf Coat Technol 2015; 261: 385–390, doi: 10.1016/j.surfcoat.2014.10.051.
- 12. Molin S., Gazda M., and Jasinski P. High temperature oxidation of porous alloys for solid oxide fuel cell applications, Solid State Ion 2010; 181(25–26): 1214–1220, doi: 10.1016/j.ssi.2010.06.049.
- 13. Koszelow D., Makowska M., Drewniak A., Cempura G., Jasiński P., and Molin S. High-temperature Corrosion of ~ 30 Pct Porous FeCr Stainless Steels in Air: Long-Term Evaluation Up to Breakaway, Metallurgical and Materials Transactions, 2023, doi: 10.1007/s11661-023-07005-z.
- 14. Koszelow D., Makowska M., Marone F., Karczewski J., Jasiński P., and Molin S. High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperaturę range 700–900 °C, Corros Sci 2021; 189: 109589, doi: 10.1016/j.corsci.2021.109589.
- 15. Drewniak A., Koszelow D., Błaszczak P., Górnicka K., Jurak K., Javed H., Sabato A.G., Jasiński P., Molin S., Smeacetto F. Glass-ceramic sealants and steel interconnects: Accelerated interfacial stability and reactivity tests at high temperature,” Mater Des 2021; 212: 110259, doi: 10.1016/j.matdes.2021.110259.
- 16. Molin S., Gazda M., Kusz B. and Jasinski P. Evaluation of 316L porous stainless steel for SOFC support, J Eur Ceram Soc 2009; 29(4): 757–762, doi: 10.1016/j.jeurceramsoc.2008.07.027.
- 17. Palcut M., Mikkelsen L., Neufeld K., Chen M., Knibbe R., and v. Hendriksen P. Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects, Corros Sci 2010; 52(10): 3309– 3320, doi: 10.1016/j.corsci.2010.06.006.
- 18. Karczewski J., Brylewski T., Miruszewski T., Andersen K.B., Jasinski P.Z., and Molin S. Hightemperature kinetics study of 430L steel powder oxidized in air at 600–850 °C, Corros Sci 2019; 149: 100–107, doi: 10.1016/j.corsci.2019.01.005.
- 19. Oliver W.C. and Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J Mater Res 1992; 7(6): 1564–1583, doi: 10.1557/JMR.1992.1564.
- 20. Chyrkin A., Schulze S.L., Pirón-Abellán J., Bleck W., Singheiser L., and Quadakkers W.J., Oxidation limited lifetime of ni-base metal foams in the temperature range 700–900 °C, Adv Eng Mater 2010; 12(9): 873–883, doi: 10.1002/adem.201000139.
- 21. Huang X., Xiao K., Fang X., Xiong Z., Wei L., Zhu P., Li X. Oxidation behavior of 316L austenitic stainless steel in high temperature air with long-term exposure, Mater Res Express 2020; 7(6): 066517, doi: 10.1088/2053-1591/ab96fa.
- 22. Robertson J. and Manning M.I. Limits to adherence of oxide scales, Materials Science and Technology 1990; 6(1): 81–92, doi: 10.1179/mst.1990.6.1.81.
- 23. Sabioni A.C.S., Huntz A.-M., da Luz E.C., Mantel M., and Haut C. Comparative study of high tempera ture oxidation behaviour in AISI 304 and AISI 439 stainless steels, Materials Research 2003; 6(2): 179– 185, doi: 10.1590/S1516-14392003000200012.
- 24. Tucker M.C. Progress in metal-supported solid oxide electrolysis cells: A review, Int J Hydrogen Energy 2020; 45(46): 24203–24218, doi: 10.1016/j. ijhydene.2020.06.300.
- 25. Ahmed F.S., El-Zomor M.A., Ghazala M.S.A., and Elshaer R.N. Effect of oxide layers formed by thermal oxidation on mechanical properties and NaCl-induced hot corrosion behavior of TC21 Ti-alloy, Sci Rep 2022; 12(1): 19265, doi: 10.1038/s41598-022-23724-6.
- 26. Pascal C., Braccini M., Parry V., Fedorova E., Mantel M., Oquab D., Monceau D. Relation between microstructure induced by oxidation and room-temperature mechanical properties of the thermally grown oxide scales on austenitic stainless steels, Mater Charact 2017; 127: 161–170, doi: 10.1016/j. matchar.2017.03.003.
- 27. Simms H.G. Oxidation Behaviour Of Austenitic Stainless Steels At High Temperature In Supercritical Plant, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f47b3a9-6e77-48c1-bfd5-93671f64fd74