PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the impact of wind turbine power characteristics on the amount of generated energy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza wpływu charakterystyk mocy turbin wiatrowych na ilość wytwarzanej energii
Języki publikacji
EN
Abstrakty
EN
In the following article the impact of power characteristics of wind turbines on the total amount of generated power is introduced. The review of scientific literature suggested the need of further analysis of this issue. In order to do so, the performance parameters of eight wind turbines, 3kW each, were catalogued, their operational characteristics modeled, with the inclusion of sample measurements of essential environmental parameters, which were taken in exemplary location in Poland. Thanks to the gathered data, not only the wind speed histograms were made, but also the average wind speeds in particular months were calculated. Then, simulation studies were carried out to determine the most optimal wind turbine for a given location. The annual maximum amount of generated power served as the main criterion in the selection process.
PL
W artykule przedstawiono wpływ charakterystyk mocy turbin wiatrowych na całkowitą ilość wytwarzanej mocy. Przegląd literatury naukowej wskazywał na potrzebę dalszej analizy tego zagadnienia. W tym celu skatalogowano parametry pracy ośmiu turbin wiatrowych o mocy 3kW każda, zamodelowano ich charakterystyki eksploatacyjne, uwzględniając przykładowe pomiary istotnych parametrów środowiskowych, które wykonano w przykładowej lokalizacji na terenie Polski. Dzięki zebranym danym wykonano nie tylko histogramy prędkości wiatru, ale również obliczono średnie prędkości wiatru w poszczególnych miesiącach. Następnie zrealizowano badania symulacyjne, które przeprowadzono w celu określenia najbardziej optymalnej turbiny wiatrowej dla danej lokalizacji. Głównym kryterium w procesie selekcji była roczna maksymalna ilość wytworzonej mocy.
Rocznik
Strony
296--300
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, ul. Piotrowo 3a, 60-965 Poznań
  • Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, ul. Piotrowo 3a, 60-965 Poznań
Bibliografia
  • [1] Pfaffel S., Faulstich S., Kurt R., Performance and reliability of wind turbines: A review, Energies 10.11 (2017): 1904, https://doi.org/10.3390/en10111904
  • [2] Hyeonwu K., Bumsuk K., Wind resource assessment and comparative economic analysis using AMOS data on a 30 MW wind farm at Yulchon district in Korea, Renewable Energy 85 (2016): 96-103, https://doi.org/10.1016/j.renene.2015.06.039
  • [3] Garcia-Sanz M., A Metric Space with LCOE Isolines for Research Guidance in wind and hydrokinetic energy systems, Wind Energ23.2 (2020): 291-311, https://doi.org/10.1002/we.2429
  • [4] Tafticht, T., et al., Output power maximization of a permanent magnet synchronous generator based stand-alone wind turbine, 2006 IEEE International Symposium on Industrial Electronics. Vol. 3. IEEE, 2006
  • [5] Morimoto S., et al., Sensorless output maximization control for variable-speed wind generation system using IPMSG, IEEE Transactions on Industry Applications 41.1 (2005): 60-67
  • [6] Errami Y., Ouassaid M., Maarouf M., Control of a PMSG based wind energy generation system for power maximization and grid fault conditions, Energy Procedia 42 (2013): 220-229
  • [7] Corradini M.L., Letizia M., Ippoliti G., Orlando G., Fully sensorless robust control of variable-speed wind turbines for efficiency maximization, Automatica 49.10 (2013): 3023-3031
  • [8] Yaramasu V., Wu B., Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems, IEEE Transactions on Power Electronics 29.10 (2013): 5308-5322
  • [9] Gebraad P., et al., Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control, Wind Energy 20.1 (2017): 97-107
  • [10] Park J., Law K.H.. Bayesian ascent: A data-driven optimization scheme for real-time control with application to wind farm power maximization, IEEE Transactions on Control Systems Technology 24.5 (2016): 1655-1668
  • [11] Li X., Diversification and localization of energy systems for sustainable development and energy security, Energy policy 33.17 (2005): 2237-2243
  • [12] Liljenfeldt J., Pettersson O., Distributional justice in Swedish wind power development – An odds ratio analysis of windmill localization and local residents’ socio-economic characteristics, Energy Policy 105 (2017): 648-657
  • [13] Zhang Y., Lu W., Chu F., Planet gear fault localization for wind turbine gearbox using acoustic emission signals, Renewable Energy 109 (2017): 449-460
  • [14] Arnold P., et al., Radar-based structural health monitoring of wind turbine blades: The case of damage localization, Wind Energy 21.8 (2018): 676-680
  • [15] Park B., et al., Delamination localization in wind turbine blades based on adaptive time-of-flight analysis of noncontact laser ultrasonic signals, Nondestructive Testing and Evaluation 32.1 (2017): 1-20
  • [16] Campagnolo F., et al., Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization, Journal of Physics: Conference Series. Vol. 753. No. 3. IOP Publishing, 2016
  • [17] Campagnolo, F., et al., Wind tunnel testing of power maximization control strategies applied to a multi-turbine floating wind power platform, The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2016)
  • [18] Tomczewski A., Kasprzyk L., Nadolny Z., Reduction of powerproduction costs in a wind power plant–flywheel energy storage system arrangement, Energies 12.10 (2019): 1942
  • [19] Tomczewski A., Kasprzyk L., Optimisation of the structure of a wind farm—Kinetic energy storage for improving the reliability of electricity supplies, Applied Sciences 8.9 (2018): 1439
  • [20] Hemmati R., Technical and economic analysis of home energymanagement system incorporating small-scale wind turbine and battery energy storage system, Journal of Cleaner Production 159 (2017): 106-118
  • [21] Śliwiński A., Wróbel K., Tomczewski K., Tomczewski A., Impact of winding parameters of a switched reluctance generator on energyefficiency of a wind turbine, SME (2018), https://ieeexplore.ieee.org/document/8442592, DOI: 10.1109/ISEM.2018.8442592
  • [22] Wrobel K., Tomczewski K., Sliwinski A., Tomczewski A., The Impact of a Wind Turbine Characteristics on the Annual Energy Performance at Given Wind Speed Distribution, PTZE (2018), https://ieeexplore.ieee.org/document/8503230, DOI: 10.1109/PTZE.2018.8503230
  • [23] Kasprzyk L., Tomczewski, A., Bednarek K., Bugała A., Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery, In E3S Web of Conferences (Vol. 19, p. 01030). EDP Sciences, EEMS (2017), DOI: 10.1051/e3sconf/20171901030
  • [24] Błasiński W.. Simulator low-power wind turbine (in Polish), Przegląd Elektrotechniczny No. 12 (2017): 263-265
  • [25] Patel M.R.. Wind and Solar Power Systems: Design, Analysis, and Operation. Second Edition, Taylor & Francis Group (2006)
  • [26] Malko J., Prediction of wind farm generation capacity (in Polish), Przegląd Elektrotechniczny No.9 (2008): 65-67
  • [27] Uracz P., Karolewski B., Modeling of wind turbines with the use of power factor characteristics (in Polish), Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych 59 (2006), Wrocław: Wydawnictwo Politechniki Wrocławskiej
  • [28] Soliński I., Energy and economic aspects of the use of wind energy (In Polish), Wyd. Inst. Gospodarki Surowcami Mineralnymi i Energią PAN (1999), Krakow
  • [29] Jarek G., Jeleń M., Gierlotka K., Wind turbine simulator based on a DC motor (in Polish), Przegląd Elektrotechniczny (6), 2014
  • [30] Numerical Investigation of the Savonius Vertical Axis Wind Turbine and Evaluation of the Effect of the Overlap Parameter in Both Horizontal and Vertical Directions on Its Performance, https://www.mdpi.com/2073-8994/11/6/821/xml
  • [31] Kumar D., Chatterjee K., A review of conventional and advanced MPPT algorithms for wind energy systems, Renewable and sustainable energy reviews (2016): 957-970
  • [32] https://www.brasit.pl/turbina-wiatrowa-typbr-v-3kw/ (accessed 21.05.2020)
  • [33] https://www.brasit.pl/aeolos-v-3000w/ (accessed 21.05.2020)
  • [34] https://www.brasit.pl/pionowa-elektrownia-wiatrowa-buf-v-3kw/ (accessed 21.05.2020)
  • [35] https://www.brasit.pl/pionowa-elektrownia-wiatrowa-saw-v-3kw/ (accessed 21.05.2020)
  • [36] https://www.brasit.pl/elektrownia-wiatrowa-turbina-hy-h-3kw/ (accessed 21.05.2020)
  • [37] https://www.brasit.pl/elektrownia-wiatrowa-turbina-humbr-h-3kw/ (accessed 21.05.2020)
  • [38] https://ekotaniej.pl/media/wysiwyg/karta-turbina.pdf (accessed 21.05.2020)
  • [39] http://hipar.pl/ecorote-2800/ (accessed 21.05.2020)
  • [40] Thapar V., Agnihotri G., Sethi V.K., Critical analysis of methods for mathematical modelling of wind turbines, Renewable Energy, vol.36 (2011), no. 11, pp. 3166-3177
  • [41] Paulsen B.M., Schroeder J.L., An examination of tropical and extratropical gust factors and the associated wind speed histograms, Journal of Applied Meteorology 44.2 (2005): 270-280
  • [42] Carta J.A., Ramirez P., Velazquez S., A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands, Renewable and sustainable energy reviews 13.5 (2009): 933-955
  • [43] Sohoni V., Gupta S, Nema R., A comparative analysis of wind speed probability distributions for wind power assessment of four sites, Turkish Journal of Electrical Engineering & Computer Sciences 24.6 (2016): 4724-4735
  • [44] Joshuva A., Sugumaran V., A study of various blade fault conditions on a wind turbine using vibration signals through histogram features, Journal of Engineering Science and Technology 13.1 (2018): 102-121
  • [45] Sarkar A., Gugliani G., Deep S., Weibull model for wind speed data analysis of different locations in India, KSCE Journal of Civil engineering 21.7 (2017): 2764-2776
  • [46] Gugliani G. K., et al., New methods to assess wind resources in terms of wind speed, load, power and direction, Renewable Energy 129 (2018): 168-182
  • [47] Zárate-Miñano R., Anghel M., Milano F., Continuous wind speed models based on stochastic differential equations, Applied Energy 104 (2013): 42-49
  • [48] Chen X., Huang W., Yao G., Wind speed estimation from X-band marine radar images using support vector regression method, IEEE Geoscience and Remote Sensing Letters 15.9 (2018): 1312-1316
  • [49] Yu Y., et al., Image-based damage recognition of wind turbine blades, 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE
  • [50] El-Asha S., Zhan L., Iungo G.V., Quantification of power losses due to wind turbine wake interactions through SCADA, meteorologicaland wind LiDAR data, Wind Energy 20.11 (2017): 1823-1839
  • [51] Sedaghat A., et al., Determination of rated wind speed formaximum annual energy production of variable speed wind turbines, Applied energy 205 (2017): 781-789
  • [52] Seo S., Si-Doek O., Ho-Young K., Wind turbine power curve modeling using maximum likelihood estimation method, Renewable energy 136 (2019): 1164-1169
  • [53] Soulouknga M. H., et al., Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution, Renewable energy 121 (2018): 1-8
  • [54] Asghar A.B., Liu X., Estimation of wind speed probability distribution and wind energy potential using adaptive neuro-fuzzy methodology, Neurocomputing 287 (2018): 58-67
  • [55] Horn J.T., Leira B.J., Fatigue reliability assessment of offshore wind turbines with stochastic availability, Reliability Engineering & System Safety 191 (2019): 106550
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f431bda-64e0-4e96-a597-4fc4282407bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.