PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dose assessment from the exposure to attached and unattached progeny of radon and thoron in indoor environment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The radiation dose from the exposure to radon (222Rn) and thoron (220Rn) is mainly contributed by their progeny, not by the gases themselves. This study aims to investigate the health risk associated with the internal exposure to attached and unattached progeny of 222Rn and220Rn in the indoor environment of Garhwal Himalaya, India. For this purpose, the passive measurements of attached and unattached progeny levels of 222Rn and 220Rn were performed in Garhwal Himalaya, India using nuclear track detector based recently developed progeny sensors. The measured values of unattached and total progeny concentrations were used to estimate the unattached fractions and annual effective doses. The annual mean unattached fractions of 222Rn and 220Rn progeny were found to be 0.15 ± 0.04 and 0.17 ± 0.05, respectively. The estimated values of the annual effective doses were found to be 3.4 ± 1.9 mSv/y and 0.7 ± 0.4 mSv/y due to the progeny of 222Rn and 220Rn, respectively. The methodology and results obtained are discussed in details.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1187--1194
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Department of PhysicsIndian Institute of Technology Roorkee Roorkee India
autor
  • German Federal Office for Radiation Protection Berlin Germany
autor
  • Department of PhysicsIndian Institute of Technology Roorkee Roorkee India
autor
  • Radiological Physics and Advisory Division Bhabha Atomic Research Centre Mumbai India
autor
  • Department of Physics HNB Garhwal University Tehri Garhwa lIndia
Bibliografia
  • 1. Agarwal NC, Kumar G (1973) Geology of the upper Bhagirathi and Yamuna valleys, Uttarkashi district, Kumaun Himalaya. Himal Geol 3:2–23
  • 2. Bangotra P, Mehra R, Kaur K et al (2015) Estimation of EEC, unattached fraction and equilibrium factor for the assessment of radiological dose using pin-hole cup dosimeters and deposition based progeny sensors. J Environ Radioact 148:67–73
  • 3. Butterweck G, Schuler C, Vessù G et al (2002) Experimental determination of the absorption rate of unattached radon progeny from respiratory tract to blood. Radiat Prot Dosimetry 102:343–348
  • 4. Chamberlain AC, Dyson ED (1956) The dose to the trachea and bronchi from the decay products of radon and thoron. Br J Radiol 29:317–325
  • 5. Guo Q, Zhang L, Guo L (2012) Assessment of the unattached fraction of indoor radon progeny and its contribution to dose: a pilot study in China. J Radiol Prot 32:447
  • 6. Gupta SK (1977) Geology and petrology of part of Upper Bhagirathi Valley Central crystalline, M. Tech Dissertation Report, Dist. Uttarkashi, UP
  • 7. Harrison JD, Marsh JW (2012) Effective dose from inhaled radon and its progeny. Ann ICRP 41:378–388
  • 8. Heim A, Gansser A (1939) Central Himalaya: geological observations of the Swiss expedition 1936
  • 9. ICRP (2011) International commission on radiological protection. Radiological protection against radon exposure. Draft report for consultation
  • 10. Jílek K, Thomas J, Tomášek L (2010) First results of measurement of equilibrium factors F and unattached fractions fp of radon progeny in Czech dwellings. Nukleonika 55:439–444
  • 11. Jonsson G (1988) Indoor 222Rn measurements in Sweden with the solid-state nuclear track detector technique. Health Phys 54:271–281
  • 12. Mayya YS, Mishra R, Prajith R et al (2010) Wire-mesh capped deposition sensors: novel passive tool for coarse fraction flux estimation of radon thoron progeny in indoor environments. Sci Total Environ 409:378–383
  • 13. Mehra R, Bangotra P, Kaur K et al (2015) Estimation of attached and unattached progeny of 222Rn and 220Rn concentration using deposition based progeny sensors. Radiat Prot Dosimetry 167:92–96
  • 14. Mishra R, Mayya YS (2008) Study of a deposition-based direct thoron progeny sensor (DTPS) technique for estimating equilibrium equivalent thoron concentration (EETC) in indoor environment. Radiat Meas 43:1408–1416
  • 15. Mishra R, Mayya YS, Kushwaha HS (2009) Measurement of 220 Rn/222 Rn progeny deposition velocities on surfaces and their comparison with theoretical models. J Aerosol Sci 40:1–15
  • 16. NNRMS standards (2005) A national standard for EO images, thematic & cartographic maps, GIS databases and spatial outputs. Report ISRO: NNRMS: TR: 112: 2005/Committee Report; Ed. Government of India, Department of Space, Indian Space Research Organisation, July 2005. www.nnrms.gov.in/greennnrms/download/NnrmsStandardsDoc.pdf. Accessed 22 June 2015
  • 17. Prasad M, Rawat M, Dangwal A et al (2015) Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India, using LR-115 deposition-based DTPS/DRPS technique. Radiation protection dosimetry 167(1–3):102–106
  • 18. Prasad M, Rawat M, Dangwal A et al (2016a) Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya. J Environ Radioact 151:238–243. https://doi.org/10.1016/j.jenvrad.2015.10.017
  • 19. Prasad M, Rawat M, Dangwal A et al (2016b) Study of radiation exposure due to radon, thoron and progeny in the indoor environment of Yamuna and Tons Valleys of Garhwal Himalaya. Radiat Prot Dosim 171:187–191. https://doi.org/10.1093/rpd/ncw055
  • 20. Ramola RC, Prasad M, Rawat M et al (2015) Comparative study of various techniques for environmental radon, thoron and progeny measurements. Radiat Protect Dosim 167:22–28
  • 21. Ramola RC, Prasad M, Kandari T et al (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep. https://doi.org/10.1038/srep31061
  • 22. Saini K, Singh P, Singh P et al (2017) Seasonal variability of equilibrium factor and unattached fractions of radon and thoron in different regions of Punjab, India. J Environ Radioact 167:110–116
  • 23. Singh P, Saini K, Mishra R et al (2016) Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from 222. Radiat Environ Biophys 55:401–410
  • 24. Snyder JP (1987) Map projections—a working manual. US geological survey professional paper 1395 (1987). http://pubs.er.usgs.gov/publication/pp1395. Accessed 22 June 2015
  • 25. UNSCEAR (2000) United Nations scientific committee of the effect of atomic radiation. Source and effects of ionizing radiation. Annex-B: exposures from natural radiation sources. United Nation, New York
  • 26. UNSCEAR (2006) United Nations scientific committee on the effects of atomic radiation., report to the general assembly with scientific annexes, VOLUME II, scientific annexes C, D and E. United Nation, New York
  • 27. Valdiya KS (1980) Geology of kumaun lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun
  • 28. WHO (2009) WHO handbook on radon: a public health prospective. In: Hajo Zeeb, Ferid Shannoun (eds). WHO library cataloguing-in-publication data
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f41bc0a-561b-4244-85f9-decd9ea63928
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.