Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Casting process takes a major percentage of manufacturing products into consideration. No-bake casting is swiftly developing technology for foundry industries. In the no-bake family, furan no-bake casting process employs resins and acid catalyst to form a furan binder system. However, this process configures castings with augmented strength and quality surface finish. Compressive strength, transverse strength and tensile strength of moulds are also high in this furan binder system. Hence this method is apt for producing accurately dimensioned castings. Our well thought-out deliberations in the subsequent write up entail the numerous effects of variation of resin and acid catalyst on the surface defect i.e. sulfur diffusion on the surface of FNB casting. Furan resin; used in the production of casting is furfuryl alcohol and acid catalyst is sulphonic acid. Sulfur diffusion is tested by Energy-dispersive X-ray spectroscopy (EDX) analysis and also by the spectrometer with jet stream technology. This paper also comprises economic advantages of optimizing resin because furan resin is expensive and catalyst with reduction of sulfur diffusion defect as it saves machining, labor cost, and energy.
Czasopismo
Rocznik
Tom
Strony
63--70
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr.
Twórcy
autor
- Atmiya Institute of Technology & Science, Rajkot, Gujarat, India
autor
- Research Scholar, Gujarat Technological University, Gujarat, India
autor
- Sardar Vallabhbhai Patel Institute of Technology, Vasad, Gujarat, India
autor
- Vishnu Minechem Pvt. Ltd., Gujarat, India
Bibliografia
- [1] Ghosh, D. (2013). Modern furan for modern castings. In Transactions of 61st Indian Foundry Congress (pp. 1-4).
- [2] Chakrabarti Shri N.G. (1966). IS 1918: Methods of physical tests for foundry sands. Bureau of Indian Standard. 4-29.
- [3] Surekha, B., Hanumanth Rao, D., & Krishnamohan Rao, G. (2013). Application of response surface methodology for modeling the properties of chromite-based resin bonded sand cores. International Journal of Mechanics. 7(4), 443-458.
- [4] Brown, J.R. (Ed.). (1994). Foseco Foundryman’s Handbook. Butterworth-Heinemann.
- [5] Popoola, A. P., & Fayomi, O. S. (2011). Accessing the performance of binders on core strength in metal casting. International Journal of Physical Sciences. 6(34), 7805-7810.
- [6] Dobosz, S.M., Major-Gabryś, K. & Hosadyna, M. (2012). New look at the process of reclamation of moulding sands. Archives of Foundry Engineering. 12(3), 19-24.
- [7] Hosadyna, M., Dobosz, S.M. & Kusiński, J. (2011). Quality of the reclamation sand and casting surface structure. Archives of Foundry Engineering. 11(1), 39-42.
- [8] Hosadyna, M., Dobosz, S.M. & Jelinek, P. (2009). The diffusion of sulphur from moulding sand to cast and methods of its elimination. Archives of Foundry Engineering. 9(4), 73-76.
- [9] Boonmee, S. & Stefanescu, D. (2009). On the mechanism of casting skin formation in compacted graphite cast iron. International Journal of Metalcasting. 3(4),19,24
- [10] Acharya, S.G., Vadher, J.A. & Kothari K.D. (2017). Evaluation of critical parameters for sand inclusion defect in FNB casting. Archives of Foundry Engineering. 17(1), 5-12.
- [11] Acharya, S.G., Vadher, J.A. & Sheladiya, M. (2016). A furan no-brake binder system analysis for improved casting quality. International Journal of Matalcasting. 10(4), 491-499.
- [12] Holtzer, M., Bobrowski, A., Drożyński, D., Makselon, J. & Isendorf, B. (2013). Investigation og properties of moulding sands with resins applied in the ALPHASET technology. Archives of Foundry Engineering. 13(spec.1), 31-37.
- [13] Gundlach, R., Meyer, M. & Winardi, L. (2015). Influence on Mn and S on the properties of cast iron part iii – testing and analysis. International Journal of Matalcasting. 9(2), 69-82.
- [14] Riposan, I. Chisamera, M. & Stan, S. (2013). Control of surface graphite degradation in ductile iron for windmill applications. International Journal of Matalcasting. 7(1), 9-20.
- [15] Riposan, I. Chisamera, M., Stan, S. & Skaland, T. (2008). Surface graphite degradation in ductile iron casting for resin moulds. Tsinghua Science & Technology. 13(2), 157-163.
- [16] Siddique, R., De Schutter, G., & Noumowe, A. (2009). Effect of used-foundry sand on the mechanical properties of concrete. Construction and Building Materials. 23(2), 976-980.
- [17] Singh, G., & Siddique, R. (2012). Effect of waste foundry sand (WFS) as partial replacement of sand on the strength, ultrasonic pulse velocity and permeability of concrete. Construction and Building Materials. 26(1), 416-422.
- [18] IS 210: (2009). Grey Iron Castings - MTD 6: Pig iron and Cast Iron, Bureau of Indian Standard.
- [19] Giese, S.R. & Thiel, J. (). Numeric ranking of step cone test castings. Transactions of the American Foundry Society. 115, 401-410.
- [20] Jin, X.U. (2005). An Investigation of the Abnormal Structure at the Surface Layer of Nodular Iron Casting Produced by Furan Resin Bonded and Sulfonic Acid Cired Sand Mould. Journal of Foundry. 12, 1245-1249.
- [21] Acharya, S.G., Vadher, J.A., Shaladiya M.V. & Madhnani, M. (2016). Quality casting of motor body using design of experiment and casting simulation. International Journal of Manufacturing Research. 11(2), 111-125.
- [22] Dańko, R., Holtzer, M. & Dańko, J. (2014). Investigation of physicochemical properties of dusts generated in mechanical reclamation process of spend moulding sands with alkaline resins. China Foundry. 11(2).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f3dd058-196b-4929-9729-e2c506455569