ON SIGNED ARC TOTAL DOMINATION IN DIGRAPHS

Leila Asgharsharghi, Abdollah Khodkar, and S.M. Sheikholeslami

Communicated by Andrzej Żak

Abstract. Let $D = (V, A)$ be a finite simple digraph and $N(uv) = \{u'v' \neq uv \mid u = u'\}$ or $v = v'$ be the open neighbourhood of *uv* in *D*. A function $f : A \to \{-1, +1\}$ is said to be a signed arc total dominating function (SATDF) of *D* if $\sum_{e' \in N(uv)} f(e') \geq 1$ holds for every arc $uv \in A$. The signed arc total domination number $\gamma'_{st}(D)$ is defined as $\gamma'_{st}(D) = \min\{\sum_{e \in A} f(e) \mid f$ is an SATDF of *D*. In this paper we initiate the study of the signed arc total domination in digraphs and present some lower bounds for this parameter.

Keywords: signed arc total dominating function, signed arc total domination number, domination in digraphs.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper we continue the study of signed dominating functions in graphs and digraphs. Let *G* be a simple graph with edge set $E(G)$ and let $N(e) = N_G(e)$ be the open neighborhood of the edge *e*. A signed edge total dominating function (SETDF) on a graph *G* is defined in [6] as a function $f : E(G) \rightarrow \{-1,1\}$ such that $\sum_{e' \in N_G(e)} f(e') \geq 1$ for every $e \in E(G)$. The weight of an SETDF *f* on a graph G is $\omega(f) = \sum_{e \in E(G)} f(v)$. The signed edge total domination number $\gamma'_{st}(G)$ of *G* is the minimum weight of an SETDF on *G*. This concept has been studied by several authors (see, for example, $[1, 5, 7]$).

Let *D* be a finite simple digraph with vertex set $V = V(D)$ and arc set $A = A(D)$. A digraph without directed cycles of length 2 is an *oriented* graph. The order $n = n(D)$ and the size $m = m(D)$ of a digraph *D* is the number of its vertices and arcs, respectively. We write $d_D^+(v)$ for the out-degree of a vertex *v* and $d_D^-(v)$ for its in-degree. The minimum and maximum in-degrees and minimum and maximum out-degrees of *D* are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^-(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. If *uv* is an arc of *D*, then we also write $u \to v$, and we say that *v* is an out-neighbor of *u* and *u* is an in-neighbor of *v*. For each vertex $v \in V$, let $N_D^-(v)$ be the

^c Wydawnictwa AGH, Krakow 2018 779

in-neighbor set which consists of all vertices of *D* from which arcs go into *v* and $N_D^+(v)$ be the out-neighbor set which consists of all vertices of *D* into which arcs go from *v*. The *degree* of a vertex *u* in *D* is defined by $d_D(u) = d_D^+(u) + d_D^-(u)$ and the minimum degree of *D* is $\delta(D) = \min\{d_D(u) \mid u \in V\}$. If $d_D(v) = 1$, then we call *v* a *pendant* vertex in *D*. If $X \subseteq V$, then $D[X]$ is the subdigraph induced by *X*. For every $uv \in A$, we define $d_D(uv) = d_D^+(u) + d_D^-(v) - 2$ to be the degree of the arc *uv* in *D*. The *minimum* and *maximum* arc degrees of *D* are denoted by $\delta' = \delta'(D)$ and $\Delta' = \Delta'(D)$, respectively. An arc of *D* is said to be a *pendant* arc if it is incident with a pendant vertex in *D*. For $uv \in A$, define $N_D(uv) = N(uv) = \{u'v' \ne uv \mid u = u'$ or $v = v'\}$ as the open neighborhood of *uv*. An *orientation* of a graph *G* is a digraph obtained from *G* by replacing every edge of *G* with a directed edge.

For a real-valued function $f : A(D) \to R$, the *weight* of f is $\omega(f) = \sum_{e \in A(D)} f(e)$, and for $S \subseteq A(D)$, we define $f(S) = \sum_{e \in A(D)} f(e)$, so $\omega(f) = f(A(D))$. Consult [4] for the notation and terminology which are not defined here.

Recently, Meng [2] defined a *signed edge dominating function* (SEDF) on a digraph *D* as a function $f : A \to \{-1, 1\}$ such that $\sum_{e' \in N[e]} f(e') \geq 1$ for every $e \in A$, where $N[e] = N(e) \cup \{e\}$. The *signed edge domination number* $\gamma'_{s}(D)$ of *D* is the minimum weight of a signed edge dominating function on *D*. Following the ideas in [2] and [6], we initiate the study of signed arc total dominating functions in digraphs.

A function $f : A \to \{-1, +1\}$ is called a *signed arc total dominating function* (SATDF) on a digraph *D*, if $f(N(uv)) \geq 1$ for each arc $uv \in A$. The minimum of the values of $\omega(f) = f(A)$, taken over all SATDF *f* of *D*, is called the *signed arc total domination number* of *D* and denoted by $\gamma'_{st}(D)$. A $\gamma'_{st}(D)$ -function is an SATDF on *D* of weight $\gamma'_{st}(D)$. Obviously, $\gamma'_{st}(D)$ is defined only for digraphs *D* with $\delta' \geq 1$. In this note we initiate the study of the signed arc total domination in digraphs and present some (sharp) bounds for this parameter.

A nonempty digraph *D* with an SATDF *f* on *D*, denoted by (*D, f*), is called a signed arc total digraph. Let (D, f) be a signed arc total digraph and let u be an arbitrary vertex in *D*, then define

$$
A^+(u^+, f) = \{ uv \in A \mid f(uv) = 1 \}, \quad A^-(u^+, f) = \{ uv \in A \mid f(uv) = -1 \},
$$

\n
$$
A^+(u^-, f) = \{ vu \in A \mid f(vu) = 1 \}, \quad A^-(u^-, f) = \{ vu \in A \mid f(vu) = -1 \},
$$

\n
$$
A_-(f) = \{ e \in A \mid f(e) = -1 \}, \quad f(u^+) = |A^+(u^+, f)| - |A^-(u^+, f)|,
$$

\n
$$
A_+(f) = \{ e \in A \mid f(e) = 1 \}, \quad f(u^-) = |A^+(u^-, f)| - |A^-(u^-, f)|.
$$

We make use of the following observations in this paper.

Observation 1.1. *If f is an SATDF on a digraph D of size m, then*

 $(\text{a}) \ \omega(f) = |A_+(f)| - |A_-(f)|,$ (b) $m = |A_+(f)| + |A_-(f)|$ (c) $\gamma'_{st}(D) \equiv m \pmod{2}$.

Observation 1.2. *Let e be an arc with degree at most 2 in D. If f is an SATDF on D, then f assigns* 1 *to each arc of* $N(e)$ *.*

For every arc $e \in A$, define

 $A_{odd} = \{e \in A \mid d_D(e) \text{ is odd}\}\$ and $A_{even} = \{e \in A \mid d_D(e) \text{ is even}\}.$

Denote $m_o = |A_{odd}|$ and $m_e = |A_{even}|$.

Observation 1.3. Let f be a signed arc total dominating function on D and $e \in A$. If $e \in A_{odd}$, then $\sum_{e' \in N(e)} f(e') \ge 1$ and $\sum_{e' \in N(e)} f(e') \ge 2$, when $e \in A_{even}$.

A directed graph is called connected if replacing all of its arcs with undirected edges produces a connected (undirected) graph.

Observation 1.4. *If* D_1, D_2, \ldots, D_s *be the components of D, then*

$$
\gamma'_{st}(D) = \sum_{i=1}^{s} \gamma'_{st}(D_i).
$$
\n(1.1)

Theorem 1.5. *Let D be a digraph of size m. Then* $\gamma'_{st}(D) = m$ *if and only if for each arc* $e \in A(D)$ *there is an arc* $e' \in N(e)$ *such that* $d_D(e') \leq 2$ *.*

Proof. One side is clear by Observation 1.2. Let $\gamma'_{st}(D) = m$. Assume, to the contrary, there exists an arc $e = uv \in A(D)$ such that for every $e' \in N(e)$, $d_D(e') \geq 3$. It is easy to verify that the function $f : A(D) \to \{-1,1\}$ that assigns -1 to *uv* and $+1$ to the remaining arcs, is an SATDF of *D* of weight $m-2$, and so $\gamma'_{st}(D) \leq m-2$, a contradiction. This completes the proof.

Remark 1.6. We remark that the signed edge total domination and signed arc total domination are not comparable. If D_1 is an orientation of $K_{1,4}$ such that $d_{D_1}^+(w)$ $d_{D_1}^-(w)$, where *w* is the central vertex of *K*_{1*,*4}, then $\gamma'_{st}(D_1) = 4 > \gamma'_{st}(K_{1,4}) = 2$. If D_2 is an orientation of $K_{2,2}$ such that $\delta' \geq 1$, then $\gamma'_{st}(D_2) = \gamma'_{st}(K_{2,2}) = 4$. Let $U = \{u_1, u_2, u_3\}$ and $V = \{v_1, v_2, v_3\}$ be the partite sets of $K_{3,3}$ and let D_3 be an orientation of *K*³*,*³ such that

$$
A(D_3) = \{u_1v_i, v_ju_2, u_3v_i, u_2v_1 \mid 1 \le i \le 3, 2 \le j \le 3\}.
$$

Define *f* on $A(D_3)$ by $f(u_1v_2) = f(u_3v_2) = -1$ and $f(x) = 1$ otherwise. Obviously, *f* is an SATDF on D_3 with weight 5. Thus $\gamma'_{st}(D_3) < \gamma'_{st}(K_{3,3}) = 7$.

2. BOUNDS ON THE SIGNED ARC TOTAL DOMINATION NUMBER

In this section, we present some lower bounds for the signed arc total domination number of a digraph *D*.

Theorem 2.1. For any digraph *D* of size $m \geq 2$ and $\delta' \geq 1$,

$$
\gamma'_{st}(D) \ge \max\{\delta' + 3 - m, \Delta' + 1 - m\}.
$$

Furthermore, this bound is sharp.

Proof. Let *f* be an SATDF on *D* and let $uv \in A$. Then *f* assigns 1 to at least $\lceil \frac{\delta'+1}{2} \rceil$ arcs in $N(uv)$. Let $u'v' \in N(uv)$ such that $f(u'v') = 1$. Also f assigns 1 to at least $\lceil \frac{\delta'+1}{2} \rceil$ arcs in $N(u'v')$. Therefore

$$
|A_{-}(f)| \le m - \frac{\delta' + 1}{2} - 1,
$$

which implies that

$$
\gamma'_{st}(D) = |A_+(f)| - |A_-(f)| \ge \frac{\delta' + 1}{2} + 1 - \left(m - \frac{\delta' + 1}{2} - 1\right) = \delta' + 3 - m,
$$

as desired. Now let $uv \in A(D)$ be an arc with maximum arc degree in *D*, then

$$
\frac{m + \gamma'_{st}(D)}{2} \ge |A_+(f)| \ge |A_+(f) \cap N(uv)| \ge \frac{\Delta' + 1}{2},
$$

and this leads to $\gamma'_{st}(D) \geq \Delta' + 1 - m$. If *D* is an orientation of $K_{1,2}$ with central vertex *v* such that $\tilde{d}_D^+(v) = 2$, then obviously $\gamma'_{st}(D) = 2 = \delta' + 3 - m$.

Theorem 2.2. *Let D be a digraph with order n and size* $m \geq 2$ *with* $\delta' \geq 1$ *. Then*

$$
\gamma'_{st}(D) \ge \frac{m - (\Delta^+ - \delta^+)(n - \delta^-)(\Delta^- - 1) - (\Delta^- - \delta^-)(n - \delta^+)(\Delta^+ - 1)}{\Delta^+ + \Delta^- - 2}.
$$

Proof. Let *f* be a $\gamma'_{st}(D)$ -function. We have

$$
\gamma'_{st}(D) = |A_+(f)| - |A_-(f)| = \sum_{u \in V} |A^+(u^+,f)| - \sum_{u \in V} |A^-(u^+,f)| = \sum_{u \in V} f(u^+). \tag{2.1}
$$

Similarly, we have

$$
\gamma'_{st}(D) = |A_+(f)| - |A_-(f)| = \sum_{u \in V} |A^+(u^-, f)| - \sum_{u \in V} |A^-(u^-, f)| = \sum_{u \in V} f(u^-). \tag{2.2}
$$

For an arbitrary $uv \in A$, $f(N(uv)) = f(u^+) + f(v^-) - 2f(uv) ≥ 1$. Therefore,

$$
m + 2\gamma'_{st}(D) \le \sum_{uv \in A} (f(u^+) + f(v^-) - 2f(uv)) + 2 \sum_{uv \in A} f(uv)
$$

=
$$
\sum_{uv \in A} (f(u^+) + f(v^-)) = \sum_{u \in V} f(u^+) d_D^+(u) + \sum_{v \in V} f(v^-) d_D^-(v).
$$

Let

$$
B_{+}^{+} = \{ u \in V \mid f(u^{+}) \ge 1 \}, \quad B_{0}^{+} = \{ u \in V \mid f(u^{+}) = 0 \}, \quad B_{-}^{+} = \{ u \in V \mid f(u^{+}) \le -1 \},
$$

$$
B_{+}^{-} = \{ u \in V \mid f(u^{-}) \ge 1 \}, \quad B_{0}^{-} = \{ u \in V \mid f(u^{-}) = 0 \}, \quad B_{-}^{-} = \{ u \in V \mid f(u^{-}) \le -1 \}.
$$

Then by (2.1) – (2.3) , we have

$$
m + 2\gamma'_{st}(D) \leq \sum_{u \in V} f(u^+)d_D^+(u) + \sum_{v \in V} f(v^-)d_D^-(v)
$$

\n
$$
= \sum_{u \in B_+^+} f(u^+)d_D^+(u) + \sum_{u \in B_-^+} f(u^+)d_D^+(u)
$$

\n
$$
+ \sum_{v \in B_+^-} f(v^-)d_D^-(v) + \sum_{v \in B_-^-} f(v^-)d_D^-(v)
$$

\n
$$
\leq \Delta^+ \sum_{u \in B_+^+} f(u^+) + \delta^+ \sum_{u \in B_-^+} f(u^+)
$$

\n
$$
+ \Delta^- \sum_{v \in B_+^-} f(v^-) + \delta^- \sum_{v \in B_-^-} f(v^-)
$$

\n
$$
= \Delta^+ \sum_{u \in V} f(u^+) + (\delta^+ - \Delta^+) \sum_{u \in B_-^+} f(v^-)
$$

\n
$$
= \Delta^+ \gamma'_{st}(D) + (\delta^+ - \Delta^+) \sum_{u \in B_-^+} f(u^+)
$$

\n
$$
+ \Delta^- \gamma'_{st}(D) + (\delta^- - \Delta^-) \sum_{v \in B_-^-} f(v^-).
$$

Hence

$$
(\Delta^{+} + \Delta^{-} - 2)\gamma'_{st}(D) \ge m + (\Delta^{+} - \delta^{+}) \sum_{u \in B_{-}^{+}} f(u^{+}) + (\Delta^{-} - \delta^{-}) \sum_{v \in B_{-}^{-}} f(v^{-}).
$$
\n(2.3)

For each $u \in B_+^+$ and $v \in N^+(u)$, we have $v \in B_+^- \cup B_0^-$. Since

$$
f(u^{+}) + f(v^{-}) - 2f(uv) \ge 1,
$$

it follows that

$$
\delta^+ \le |N^+(u)| \le |B_+^-| + |B_0^-| = n - |B_-^-|.
$$

Therefore

$$
|B_{-}^{-}| \leq n - \delta^{+}.\tag{2.4}
$$

Similarly, for each $v \in B_-\^-$ and $u \in N^-(v)$, we have $u \in B_+^+ \cup B_0^+$, which implies

$$
|B_{-}^{+}| \le n - \delta^{-}.
$$
\n(2.5)

On the other hand, for each $u \in B^{\pm}$, there must be a vertex $v \in N^+(u)$ such that $f(uv) = -1$. Using this and the fact that $f(u^+) + f(v^-) - 2f(uv) \ge 1$, we get *f*(*u*⁺) + *f*(*v*[−]) ≥ −1. Since *f*(*v*[−]) ≤ Δ [−] −2, we have

$$
f(u^+) \ge 1 - \Delta^-.
$$
\n^(2.6)

Similarly, for each $v \in B_-,$ we have

$$
f(v^-) \ge 1 - \Delta^+.
$$
\n^(2.7)

 \Box

Applying (2.3) – (2.7) , we obtain

$$
(\Delta^{+} + \Delta^{-} - 2)\gamma'_{st}(D) \ge m - (\Delta^{+} - \delta^{+})(n - \delta^{-})(\Delta^{-} - 1) - (\Delta^{-} - \delta^{-})(n - \delta^{+})(\Delta^{+} - 1)
$$

as desired.

A digraph *D* is regular if $\Delta^+ = \delta^+ = \Delta^- = \delta^-$. As an application of Proposition 2.2, we obtain a lower bound on the signed arc total domination number for *r*-regular digraphs.

Corollary 2.3. *If D is an r-regular digraph of size m* with $r \geq 2$ *, then*

$$
\gamma'_{st}(D) \ge \left\lceil \frac{m}{2r-2} \right\rceil.
$$

Theorem 2.4. *For any digraph D of order n and size m,*

$$
\gamma'_{st}(D) \ge 2 \left[\frac{m^2}{n(\Delta^+ + \Delta^- - 2)} - \frac{m_o}{2(\Delta^+ + \Delta^- - 2)} \right] - m.
$$

Proof. Let *f* be a $\gamma'_{st}(D)$ -function and let $e = uv$ be an arc in *D*. If *e* is an arc of odd degree, then

$$
|N(e) \cap A_+(f)| \ge \frac{1}{2}(d_D^+(u) + d_D^-(v) - 1)
$$

and if *e* is an arc of even degree, then

$$
|N(e) \cap A_+(f)| \ge \frac{1}{2}(d_D^+(u) + d_D^-(v)).
$$

Thus

$$
\sum_{e \in A} |N(e) \cap A_{+}(f)| \geq \frac{1}{2} \sum_{uv \in A} (d_{D}^{+}(u) + d_{D}^{-}(v)) - \frac{1}{2}m_{o}
$$

= $\frac{1}{2} \left(\sum_{u \in V} (d_{D}^{+}(u))^{2} + \sum_{v \in V} (d_{D}^{-}(v))^{2} \right) - \frac{1}{2}m_{o}$
 $\geq \frac{1}{2n} \left[\left(\sum_{u \in V} d_{D}^{+}(u) \right)^{2} + \left(\sum_{v \in V} d_{D}^{-}(v) \right)^{2} \right] - \frac{1}{2}m_{o} = \frac{m^{2}}{n} - \frac{m_{o}}{2}.$

On the other hand,

$$
(\Delta^{+} + \Delta^{-} - 2)|A_{+}(f)| \ge \sum_{e \in A_{+}(f)} |N(e)|
$$

=
$$
\sum_{e \in A_{+}(f)} (|N(e) \cap A_{+}(f)| + |N(e) \cap A_{-}(f)|)
$$

=
$$
\sum_{e \in A_{+}(f)} |N(e) \cap A_{+}(f)| + \sum_{e \in A_{+}(f)} |N(e) \cap A_{-}(f)|
$$

=
$$
\sum_{e \in A_{+}(f)} |N(e) \cap A_{+}(f)| + \sum_{e \in A_{-}(f)} |N(e) \cap A_{+}(f)|
$$

=
$$
\sum_{e \in A} |N(e) \cap A_{+}(f)| \ge \frac{m^{2}}{n} - \frac{m_{o}}{2}.
$$

Since $\gamma'_{st}(D) = 2|A^+(f)| - m$, we get

$$
\gamma'_{st}(D) \ge 2\left\lceil \frac{m^2}{n(\Delta^+ + \Delta^- - 2)} - \frac{m_o}{2(\Delta^+ + \Delta^- - 2)} \right\rceil - m.
$$

Theorem 2.5. *Let D be a digraph of size m. Then*

$$
\gamma'_{st}(D) \ge \frac{(2+\delta'-\Delta')m + 2m_e}{\delta' + \Delta'}.
$$

Proof. Let *f* be a $\gamma'_{st}(D)$ -function and $\sum_{e \in A} d_D(e) = L$. By Observation 1.3, we have

$$
\sum_{e \in A} \sum_{e' \in N(e)} f(e') = \sum_{e \in A_{even}} \sum_{e' \in N(e)} f(e') + \sum_{e \in A_{odd}} \sum_{e' \in N(e)} f(e')
$$
\n
$$
\geq 2|A_{even}| + |A_{odd}| = m_e + m.
$$
\n(2.8)

On the other hand,

$$
\sum_{e \in A} \sum_{e' \in N(e)} f(e') = \sum_{e \in A} d_D(e) f(e) = \sum_{e \in A_+(f)} d_D(e) f(e) + \sum_{e \in A_-(f)} d_D(e) f(e)
$$

=
$$
\sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A_-(f)} d_D(e) = 2 \sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A} d_D(e)
$$

$$
\leq 2\Delta' |A_+(f)| - L.
$$
 (2.9)

Similarly, we have

$$
\sum_{e \in A} \sum_{e' \in N(e)} f(e') = \sum_{e \in A} d_D(e) f(e) = \sum_{e \in A_+(f)} d_D(e) f(e) + \sum_{e \in A_-(f)} d_D(e) f(e)
$$

$$
= \sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A_-(f)} d_D(e) = \sum_{e \in A} d_D(e) - 2 \sum_{e \in A_-(f)} d_D(e)
$$

$$
\leq \sum_{e \in A} d_D(e) - 2|A_-(f)|\delta' = L - 2(m - |A_+(f)|)\delta'. \tag{2.10}
$$

By (2.8) – (2.10) , we deduce the following inequalities:

$$
m + m_e + L \le 2\Delta' |A_+(f)|
$$
 and $m + 2m\delta' + m_e - L \le 2\delta' |A_+(f)|$. (2.11)

Summing the inequalities in (2.11), we have

$$
|A_+(f)| \ge \frac{(1+\delta')m + m_e}{\delta' + \Delta'},
$$

and hence

$$
\gamma'_{st}(D) = 2|A_+(f)| - m \ge \frac{(2+\delta'-\Delta')m + 2m_e}{\delta' + \Delta'}.
$$

Theorem 2.6. *Let D be a digraph of size m with the arc degree sequence* $d'_1 \geq d'_2 \geq \ldots \geq d'_m$. Then

$$
\gamma'_{st}(D) \ge 2\left\lceil \frac{m + m_e + L - 2L_t + 2td'_{t+1}}{2d'_{t+1}} \right\rceil - m,
$$

 $where t = \max\left\{ \left\lceil \frac{m(1+2\delta') - L + m_e}{2\delta'} \right\rceil, \left\lceil \frac{m+L+m_e}{2\Delta'} \right\rceil \right\}$ $\left\{ \right\}$, $L_t = \sum_{i=1}^t d'_i$ and $L = \sum_{e \in A} d_D(e)$. *Proof.* Let *f* be a $\gamma'_{st}(D)$ -function on *D*. From (2.11), we have

$$
|A_+(f)| \ge \frac{m+L+m_e}{2\Delta'}, \quad |A_+(f)| \ge \frac{m(1+2\delta')-L+m_e}{2\delta'}.
$$

So

$$
|A_+(f)| \geq t = \max \bigg\{ \Big\lceil \frac{m(1+2\delta')-L+m_e}{2\delta'} \Big\rceil, \Big\lceil \frac{m+L+m_e}{2\Delta'} \Big\rceil \bigg\}.
$$

It follows from inequality (2.8) and the inequality chain (2.9) that

$$
m + m_e \le 2 \sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A} d_D(e)
$$

$$
\le 2 \left(\sum_{i=1}^t d'_i + (|A_+(f)| - t) d'_{t+1} \right) - L
$$

$$
= 2 \left(L_t + (|A_+(f)| - t) d'_{t+1} \right) - L.
$$

Therefore

$$
|A_{+}(f)| \ge \left\lceil \frac{m + m_e + L - 2L_t + 2td'_{t+1}}{2d'_{t+1}} \right\rceil
$$

and hence

$$
\gamma'_{st}(D) = 2|A_+(f)| - m \ge 2\left\lceil \frac{m + m_e + L - 2L_t + 2td'_{t+1}}{2d'_{t+1}} \right\rceil - m.
$$

Theorem 2.7. For every simple connected digraph *D* with $2 \leq \delta' \leq \Delta' \leq 6$, $\gamma'_{st}(D) \geq 0$. *Proof.* Let *f* be a $\gamma'_{st}(D)$ -function. Since $2 \le \delta' \le \Delta' \le 6$, we have $|N_D(e) \cap A_+(f)| \ge 2$ and $|N_D(e) \cap A_-(f)| \leq 2$. Now it is clear that

$$
2|A_{-}(f)| \leq \sum_{e \in A_{-}(f)} |N_{D}(e) \cap A_{+}(f)| = \sum_{e \in A_{+}(f)} |N_{D}(e) \cap A_{-}(f)| \leq 2|A_{+}(f)|.
$$

Thus $|A_-(f)| \leq |A_+(f)|$ and hence, $\gamma'_{st}(D) = |A_+(f)| - |A_-(f)| \geq 0$.

\Box

3. SIGNED ARC TOTAL DOMINATION IN ORIENTED GRAPHS

Let *G* be the complete bipartite graph $K_{2,3}$ with bipartite sets $V = \{v_1, v_2\}$ and $U = \{u_1, u_2, u_3\}$. Let D_1 be an orientation of *G* such that all arcs go from *V* into *U* and let D_2 be an orientation of *G* such that $A(D_2) = \{(v_1, u_j), (u_j, v_2) | j = 1, 2, 3\}.$ It is easy to see that $\gamma'_{st}(D_1) = 2$ and $\gamma'_{st}(D_2) = 6$. Therefore, two distinct orientations of a graph can have different signed total arc domination numbers. Motivated by this observation, we define lower orientable signed total arc domination number $dom'_{st}(G)$ and upper orientable signed total arc domination number $Dom'_{st}(G)$ of a graph G as follows:

$$
\text{dom}_{st}'(G) = \min\{\gamma_{st}'(D) \mid D \text{ is an orientation of } G \text{ with } \delta' \ge 1\},\
$$

and

$$
\text{Dom}_{st}'(G) = \max\{\gamma'_{st}(D) \mid D \text{ is an orientation of } G \text{ with } \delta' \ge 1\}.
$$

An immediate consequence of Proposition 1.5 now follows.

Corollary 3.1. *For* $n \geq 3$, $dom'_{st}(P_n) = n - 1$, $dom'_{st}(C_n) = n$.

Proposition 3.2. *If* $G = K_{1,m}$ *is a star, then* $dom'_{st}(K_{1,m}) = \begin{cases} 3 & m \text{ is odd,} \\ 2 & m \text{ is even} \end{cases}$ 2 *m is even.*

Proof. Consider the graph $K_{1,m}$ with bipartite sets $\{v_1\}$ and $\{u_1, u_2, \ldots, u_m\}$. Let *D* be an orientation of $K_{1,m}$ and let *f* be a $\gamma'_{st}(D)$ -function. If $d_D^+(v_1) = 0$ or $d_D^-(v_1) = 0$, then $|A_{-}(f)| = (m-2)/2$ if *m* is even and $|A_{-}(f)| = (m-3)/2$ if *m* is odd. Hence, $\gamma'_{st}(D) = 2$ if *m* is even and $\gamma'_{st}(D) = 3$ if *m* is odd. Suppose that $d^+_D(v_1)$ and $d_D^-(v_1) \geq 1$. If either $d_D^+(v_1) = 1$ or $d_D^-(v_1) = 1$, then there is an arc $e = v_1 u_i$ with $d_D(e) = 0$, a contradiction. So $d_D^+(v_1)$ and $d_D^-(v_1) \geq 2$. Let, without loss of generality, that $u_1 \in N^+(v_1)$ and $u_2 \in N^-(v_1)$. If *m* is odd, then either $f(N(v_1u_1)) \geq 2$ or $f(N(u_2v_1)) \geq 2$. Thus $\gamma'_{st}(D) \geq 3$. If *m* is even, since $f(N(v_1u_1)) \geq 1$ and $f(N(u_2v_1)) \geq 1$, it follows that $\gamma'_{st}(D) \geq 2$. This completes the proof.

Lemma 3.3. For $m \geq 2$, $\gamma'_{st}(K_{2,m}) = \begin{cases} 4 & \text{if } m \text{ is even,} \\ 2 & \text{if } m \text{ is odd.} \end{cases}$ 2 *if m is odd.*

Proof. Let $X = \{u_1, u_2\}$ and $Y = \{v_1, v_2, \dots, v_m\}$ be the partite sets of $K_{2,m}$ and let *f* be a $\gamma'_{st}(K_{2,m})$ -function. We consider two cases.

Case 1. m is odd. Since

$$
f(N(u_1v_1)) = f(u_2v_1) + \sum_{i=2}^{m} f(u_1v_i) \ge 1
$$

and

$$
f(N(u_2v_1)) = f(u_1v_1) + \sum_{i=2}^{m} f(u_2v_i) \ge 1,
$$

we have

$$
\omega(f) = \sum_{i=1}^{m} f(u_1v_i) + \sum_{i=1}^{m} f(u_2v_i) = f(N(u_1v_1)) + f(N(u_2v_1)) \ge 2.
$$

Define $g: E(K_{2,m}) \to \{-1,1\}$ by $g(u_1v_1) = g(u_2v_1) = 1$ and $g(u_1v_i) = g(u_2v_i) =$ $(-1)^i$ for $2 \le i \le m$. Obviously, *g* is an SETDF of $K_{2,m}$ of weight 2 and so $\gamma'_{st}(K_{2,m}) \leq 2$. Therefore $\gamma'_{st}(K_{2,m}) = 2$.

Case 2. m is even.

Define *g* : $E(K_{2,m})$ → {−1,1} by $g(u_i v_1) = g(u_i v_2) = 1$ for $i = 1, 2$ and $g(u_1 v_i) =$ *g*(u_2v_i) = (−1)^{*i*} for 3 ≤ *i* ≤ *m*. Obviously *g* is an SETDF of $K_{2,m}$ of weight 4 and hence $\gamma'_{st}(K_{2,m}) \leq 4$. Now we show that $\gamma'_{st}(K_{2,m}) = 4$. Since *m* is even, $f(N(u_1v_1)) \geq 2$ and $f(N(u_2v_1)) \geq 2$. Hence,

$$
\omega(f) = f(N(u_1v_1)) + f(N(u_2v_1)) \ge 4.
$$

Therefore $\gamma'_{st}(K_{2,m}) = 4$.

Proposition 3.4. For $m \geq 2$, $\text{dom}_{st}'(K_{2,m}) = \begin{cases} 2 & \text{if } m \text{ is odd,} \\ 4 & \text{if } m \text{ is even} \end{cases}$ 4 *if m is even.*

Proof. Let $U = \{u_1, u_2\}$ and $V = \{v_1, v_2, \dots, v_m\}$ be the partite sets of $K_{2,m}$, *D* be an orientation on $K_{2,m}$ and f be a $\gamma'_{st}(D)$ -function. If $d^+_D(v_i) = 2$ (or $d^-_D(v_i) = 2$) for each $1 \leq i \leq m$, then we are done by Lemma 3.3. Without loss of generality, suppose that $d_D^+(u_1) \geq d_D^-(u_1)$. We distinguish two cases.

Case 1. $d_D^+(v_i) = d_D^-(v_i) = 1$, for some *i*, say *i* = 1. Without loss of generality, suppose that $u_1v_1, v_1u_2 \in A(D)$. Since $f(N(u_1v_1)) \geq 1$, there is at least one arc $e' \in N(u_1v_1)$ such that $f(e') = 1$. Similarly, there is an arc $e'' \in N(v_1u_2)$ such that $f(e'') = 1$. Since

$$
|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| \le 1
$$

and

$$
|N(e'') \cap (\{v_i u_1 \mid v_i u_1 \in A(D)\})| \le 1,
$$

 \Box

we have

$$
\gamma'_{st}(D) \ge \sum_{u_2v_i \in A(D)} f(u_2v_i) + f(e') + f(N(e')) + f(e'') + f(N(e'')) + \sum_{v_iu_1 \in A(D)} f(v_iu_1) - 2 \ge 4 - 2 = 2.
$$

Hence, if *m* is odd, then the statement is true. Assume that *m* is even. If either $|N(e')|$ and $|N(e'')|$ are even or

$$
|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| = |N(e'') \cap (\{v_iu_1 \mid v_iu_1 \in A(D)\})| = 0,
$$

then by an argument similar to that described above we get $\gamma'_{st}(D) \geq 4$. We consider two subcases.

Subcase 1.1. $|N(e')|$ is odd and $|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| = 1$ (the case $|N(e'')|$) is odd and $|N(e'') \cap (\{v_i u_1 \mid v_i u_1 \in A(D)\})| = 1$ is similar). Then $|N(u_1v_1)|$ is even. Let

$$
\{x\} = N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\}).
$$

If $f(x) = -1$, then $\sum_{u_1v_i \in A(D)} f(u_1v_i) \geq 3$ and $\sum_{u_2v_i \in A(D)} f(u_2v_i) \geq -1$ and if $f(x) = 1$, then $\sum_{u_1v_i \in A(D)} f(u_1v_i) \geq 1$ and $\sum_{u_2v_i \in A(D)} f(u_2v_i) \geq 1$. Consequently, $\sum_{u_1v_i\in A(D)} f(u_1v_i) + \sum_{u_2v_i\in A(D)} f(u_2v_i) \geq 2.$ Moreover, since $f(N(e'')) \geq 1$, we have $\sum_{v_i} v_i \sum_{i=1}^n f(v_i u_2) \geq 1$. If there is an arc $y = v_i u_1$ (note that since *m* and $|N(u_1v_1)|$ are even, there is at least one arc v_iu_1 in $A(D)$) such that $f(y) = 1$, then $\sum_{v_i u_1 \in A(D)} f(v_i u_1) \geq 1$. Therefore

$$
\gamma'_{st}(D) = \sum_{u_1v_i \in A(D)} f(u_1v_i) + \sum_{u_2v_i \in A(D)} f(u_2v_i) + \sum_{v_iu_1 \in A(D)} f(v_iu_1) + \sum_{v_iu_2 \in A(D)} f(v_iu_2) \ge 4.
$$

Suppose that $f(v_iu_1) = -1$ for each $v_iu_1 \in A(D)$. Then $d_D^-(u_1) = 1$. Without loss of generality, suppose that $\{v_m\} = N_D^-(u_1)$. Since $\sum_{e \in N(v_m u_1)} f(e) \geq 1$, we have $f(v_m u_2) = 1$ and since $f(N(v_m u_2)) \geq 1$, we have $\sum_{v_i u_2 \in A(D)} f(v_i u_2) \geq 3$. Therefore,

$$
\gamma'_{st}(D) = \sum_{u_1v_i \in A(D)} f(u_1v_i) + \sum_{u_2v_i \in A(D)} f(u_2v_i) + f(v_mu_1) + \sum_{v_iu_2 \in A(D)} f(v_iu_2) \ge 4.
$$

Subcase 1.2. $|N(e')|$ is odd and $|N(e'') \cap (\{v_i u_1 \mid v_i u_1 \in A(D)\})| = 1$ (the case $|N(e'')|$) is odd and $|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| = 1$ is similar).

Let $\{z\} = N(e'') \cap (\{v_iu_1 \mid v_iu_1 \in A(D)\})$. If $f(z) = -1$, then $\sum_{v_iu_2 \in A(D)} f(v_iu_2) \ge 3$ and $\sum_{v_i u_1 \in A(D)} f(v_i u_1) \geq -1$ and if $f(z) = 1$, then $\sum_{v_i u_2 \in A(D)} f(v_i u_2) \geq 1$ and $\sum_{v_i u_1 \in A(D)} f(v_i u_1) \geq 1$. Hence, $\sum_{v_i u_1 \in A(D)} f(v_i u_1) + \sum_{v_i u_2 \in A(D)} f(v_i u_2) \geq 2$. If $d_D^+(u_2) = 0$, since $f(N(e')) \ge 1$, then $\sum_{u_1v_i \in A(D)} f(u_1v_i) \ge 2$ and if there is an arc $y = u_2v_i$ such that $f(y) = 1$, then $\sum_{u_2v_i \in A(D)} f(u_2v_i) \ge 1$. Therefore

$$
\gamma'_{st}(D) = \sum_{u_1v_i \in A(D)} f(u_1v_i) + \sum_{u_2v_i \in A(D)} f(u_2v_i) + \sum_{v_iu_1 \in A(D)} f(v_iu_1) + \sum_{v_iu_2 \in A(D)} f(v_iu_2) \le 4.
$$

Suppose that $f(u_2v_i) = -1$ for each $u_2v_i \in A(D)$. Then $d_D^+(u_2) = 1$. Without loss of generality, suppose that $\{v_m\} = N_D^+(u_2)$. Then $f(u_1v_m) = 1$ and $\sum_{u_1v_i \in A(D)} f(u_1v_i) \geq 3$. Therefore,

$$
\gamma'_{st}(D) = \sum_{u_1v_i \in A(D)} f(u_1v_i) + f(u_2v_m) + \sum_{v_iu_1 \in A(D)} f(v_iu_1) + \sum_{v_iu_2 \in A(D)} f(v_iu_2) \ge 4.
$$

Case 2. $d_D^+(v_i) = 2$ and $d_D^-(v_j) = 2$, for some *i, j.* Without loss of generality, suppose that $d_D^+(v_i) = 2$ for $1 \le i \le t$ and $d_D^-(v_j) = 2$ for $t + 1 \leq j \leq m$. Then by Lemma 3.3,

$$
\gamma'_{st}(D) = \gamma'_{st}(K_{2,t}) + \gamma'_{st}(K_{2,m-t}) \ge 2 + 2 = 4.
$$

This completes the proof.

Theorem 3.5. For any integer *t*, there is a graph *G* with $dom'_{st}(G) = -t$ *.*

Proof. For a given positive integer $r \geq 4$, let *T* be a graph that obtained from a star $K_{1,r}$ by subdividing all of its edges once and let *G* be the graph obtained from $t+1$ copies of *T* with central vertices $v_1, v_2, \ldots, v_{t+1}$ by adding the edges $v_1v_2, v_2v_3, \ldots, v_tv_{t+1}$ (see Figure 1).

Fig. 1. A digraph with $\gamma'_{st}(D) = -4$

Let $\{v_j, v_{i,j}, u_{i,j} \mid 1 \leq i \leq t\}$ be the vertex set of *j*th copy of *T*, where $N(v_{i,j})$ $\{v_j, u_{i,j}\}\$ and $u_{i,j}$ are leaves for each *i*. Let *D* be an arbitrary orientation of *G* and let *f* be a $\gamma'_{st}(D)$ -function. Clearly, either $d^+_{D}(v_{i,j}) = 2$ or $d^-_{D}(v_{i,j}) = 2$ for each *i, j* because $\delta' \geq 1$. In both cases, f assigns $+1$ to each non-pendant arc of each copy of T .

 \Box

Since the least possible weight for *f* will be achieved if $f(e) = -1$ for each other arcs, we have $\omega(f) \ge (t+1)r - (t+1)r - t = -t$. In order to show that $dom'_{st}(G) \le -t$, let *D* be an orientation of *G* such that

$$
A(D) = \{ (v_j, v_{j+1}), (v_j, v_{i,j}), (u_{i,j}, v_{i,j}) : 1 \le i \le r, 1 \le j \le t \},\
$$

as illustrated in Figure 1 for $t = 4$. Define $f : A(D) \rightarrow \{-1,1\}$ by $f(v_jv_{i,j}) = +1$ and $f(v_j, v_{j+1}) = f(u_{i,j}v_{i,j}) = -1$ for $1 \leq i \leq r$ and $1 \leq j \leq t$. Obviously, *f* is an SATDF on *D* of weight $-t$. Therefore, dom'. $(G) = -t$. on *D* of weight $-t$. Therefore, dom'_{st}(*G*) = $-t$.

Theorem 3.6. If T is a tree of order $n > 3$, then

$$
\text{dom}'_{st}(T) \ge \frac{7-n}{3}.
$$

Furthermore, this bound is sharp.

Proof. The proof is by induction on *n*. The statement holds for all trees of order $n = 3, 4, 5$. Assume *T* is a tree of order $n \geq 6$ and that the statement holds for all trees with smaller orders. Let *D* be an arbitrary orientation of *T* with $\delta' \geq 1$ and let *f* be a $\gamma'_{st}(D)$ -function. We consider two cases.

Case 1. There is a non-pendant arc, say $e = uv \in A(D)$, for which $f(e) = -1$. Let D_1 and D_2 be the components of $D - e$ with $u \in D_1$ and $v \in D_2$. Obviously, the order of *D*₁ and *D*₂ are greater than 3 and $\gamma'_{st}(D) = f(A(D_1)) - 1 + f(A(D_2))$. For $i = 1, 2$, the function *f*, restricted to D_i , is an SATDF of D_i , and so $\gamma'_{st}(D_i) \le f(A(D_i))$. By the inductive hypothesis,

$$
\gamma'_{st}(D_i) \ge \frac{7 - |A(D_i)|}{3}.
$$

Thus

$$
\gamma'_{st}(D) \ge -1 + \frac{7 - |A(D_1)|}{3} + \frac{7 - |A(D_2)|}{3} = \frac{11 - n}{3} > \frac{7 - n}{3}.
$$

Case 2. The only arcs *e* for which $f(e) = -1$ are pendant arcs. Then $f(v^+) \ge 0$ for each $v \in V(D)$ with $d^+_D(v) \ge 2$ and $f(v^-) \ge 0$ for each $v \in V(D)$ with $d_D^-(v) \geq 2$. Let

$$
P_D^+ = \{ v \in V(D) \mid d_D^+(v) \ge 2 \text{ and } f(v^+) = 0 \} \text{ and}
$$

$$
P_D^- = \{ v \in V(D) \mid d_D^-(v) \ge 2 \text{ and } f(v^-) = 0 \}.
$$

First, let $P_D^+ = P_D^- = \emptyset$. Then *f* is an SEDF of *D*. Hence, $\gamma_s'(D) \ge |V(D)| - |A(D)|$ (see [2]). Since $n \ge 6$ and $|V(D)| = |A(D)| + 1$, it follows that

$$
\gamma'_{st}(D) = f(A(D)) \ge \gamma'_{s}(D) \ge 1 > \frac{7-n}{3}.
$$

Without loss of generality, suppose that $P_D^+ \neq \emptyset$. Let $P_D^+ = \{u_1, u_2, \dots, u_k\}$. Obviously, there is no $+1$ pendant arc out from u_i for each *i*. Let

$$
M_D^+(u_i) = \{ u \in N_D^+(u_i) \mid d_D^-(u) \ge 2 \}.
$$

Let first $|M_D^+(u_i)| \geq 2$ for some *i*. Without loss of generality we may assume $|M_D^+(u_1)| \geq 2$ and $v_1, v_2 \in M_D^+(u_1)$. Let D_1 and D_2 be the connected components of $D - u_1v_1$ for which $v_1 \in V(D_1)$. Let D'_1 be obtained from D_1 by adding a new pendant arc w_1v_1 and let D'_2 be obtained from D_2 by deleting one of the -1 pendant arcs out from u_1 . Now define $g : A(D'_1) \to \{-1, +1\}$ by $g(w_1v_1) = +1$ and $g(e) = f(e)$ if $e \in A(D_1)$. Obviously, *g* is an SATDF of D'_1 and $f|_{D'_2}$ is an SATDF of D'_2 . By the inductive hypothesis,

$$
\gamma'_{st}(D'_i) \ge \frac{7 - |A(D'_i)|}{3}.
$$

Thus

$$
\gamma'_{st}(D) = f(A(D)) = g(A(D'_1)) + f|_{D'_2}(A(D'_2)) - 1
$$

\n
$$
\geq -1 + \frac{7 - |A(D'_1)|}{3} + \frac{7 - |A(D'_2)|}{3} > \frac{7 - n}{3}.
$$

Now let $M_D^+(u_i) = \{v_i\}$ for each $1 \leq i \leq k$. Since $f(N(u_i v_i)) \geq 1$, we have $f(v_i^-) \geq 3$ for each *i*. Let D' be obtained from D by deleting all pendant vertices and the vertices of P_D^+ . We distinguish three subcases.

Subcase 2.1. $d_{D'}^-(v_1) \geq 1$, $e = vv_1 \in A(D')$ and $f(v^+) = 1$ in *D*. By the construction of *D'* we have $d_D^+(v) \geq 3$. Since $f(v^+) = 1$ and all arcs in *D'* are +1 arcs, there exists a pendant arc e' out from v in *D*, say $e' = vz$. Let *D*₁ and *D*₂ be the connected components of $D - e$ containing v_1 and v , respectively. Let D'_1 be obtained from D_1 by adding a new pendant arc $v'v_1$ at v_1 and $D'_2 = D_2 - z$. It is easy to see that the order of D'_1 and D'_2 are greater than 3. Define $g : A(D'_1) \to \{-1, +1\}$ by $g(v'v_1) = 1$ and $g(e) = f(e)$ if $e \in A(D_1)$. Obviously, *g* and $f|_{D'_2}$ are SATDFs of D_1' and D_2' , respectively. By the inductive hypothesis,

$$
\gamma'_{st}(D'_i) \ge \frac{7 - |V(D_i)|}{3}.
$$

Thus

$$
\gamma'_{st}(D) = f(A(D)) = g(A(D'_1)) + f|_{D'_2}(A(D'_2)) - 1
$$

\n
$$
\geq -1 + \frac{7 - |V(D'_1)|}{3} + \frac{7 - |V(D'_2)|}{3} > \frac{7 - n}{3}.
$$

Subcase 2.2. $d_{D'}^-(v_1) \geq 1$, $e = v v_1 \in A(D')$ and $f(v^+) \geq 2$ in *D*.

Let D_1 and D_2 be the connected components of $D - e$. Let D'_1 and D'_2 be obtained from D_1 and D_2 by adding new pendant arcs $v'v_1$ and vv'' , respectively. Define $g_1: A(D'_1) \to \{-1, +1\}$ by $g_1(v'v_1) = 1$ and $g(e) = f(e)$ if $e \in A(D_1)$, and $g_2: A(D'_2) \to \{-1, +1\}$ by $g(vv'') = 1$ and $g(e) = f(e)$ if $e \in A(D_2)$. Obviously, g_i is an SATDF of D'_i for $i = 1, 2$. In addition, we have $|V(D'_1)| + |V(D'_2)| = n + 2$. By the inductive hypothesis,

$$
\gamma'_{st}(D) = f(A(T)) = g_1(A(D'_1)) + g_2(A(D'_2)) - 1 > \frac{7-n}{3}.
$$

Subcase 2.3. $d_{D'}^-(v_1) = 0$.

This implies that $u_i v_1 \in A(D)$ for each $1 \leq i \leq k$. If there exist two pendant arcs at v_1 , say $e' = xv_1$, $e'' = yv_1$, such that $f(e') = -1$ and $f(e'') = 1$, then using the inductive hypothesis on $D - \{x, y\}$ we have

$$
\gamma'_{st}(D)\geq \frac{7-(n-2)}{3}>\frac{7-n}{3}.
$$

Let *r* be the number of pendant in-neighbors of *v*₁. By assumption $k - r = f(v_1^-) \geq 3$. Furthermore, since $f(u_i^+) = 0$, there exists a pendant arc $u_i w_i$ for each *i*. Therefore, *n* ≥ 2*k* + *r* + 1 and hence, *r* ≤ $\frac{n-7}{3}$. If *D*₁ is the subdigraph induced by $(\cup_{i=1}^{k} N_D^+(u_i)) \cup$ $N_D^-(v_1)$, then $\omega(f|_{D_1}) = -r$. Now let D_2 be the digraph obtained from *D* by deleting all arcs of D_1 and all the isolated vertices. If $|V(D_2)| = 0$, then $D = D_1$ and we are done. Let $|V(D_2)| \neq 0$. Since *D* is an oriented tree, it is easy to verify that D_2 has *t* components, where $t = |V(D_1) \cap V(D_2)|$. Since the order of each component of D_2 is greater than 2, by the induction hypothesis and Observation 1.4, we have

$$
\gamma'_{st}(D_2) \ge \frac{7t - |V(D_2)|}{3}.
$$

Therefore

$$
\gamma'_{st}(D) \ge \gamma'_{st}(D_1) + \gamma'_{st}(D_2) \ge \frac{7 - |V(D_1)|}{3} + \frac{7t - |V(D_2)|}{3}
$$

=
$$
\frac{7(t+1) - (n+t)}{3} > \frac{7-n}{3}.
$$

In order to show the sharpness of the lower bound, let *D* be a digraph with vertex set

$$
V(D) = \{w, u_i, v_i, w_j \mid 1 \le i \le k, k \ge 3 \text{ and } 1 \le j \le k - 3\},\
$$

and arc set

$$
A(D) = \{ww_j, w u_i, v_i u_i \mid 1 \le i \le k \text{ and } 1 \le j \le k - 3\}
$$

(see Figure 2).

Fig. 2. Digraph *D* with $k = 7$

Define *f* : *A*(*D*) → {−1, 1} by $f(ww_j) = f(v_iu_i) = -1$ and $f(wu_i) = 1$ for each $1 \leq i \leq k$ and $1 \leq j \leq k-3$. Clearly, *f* is an SATDF of *D* with weight $\frac{7-n}{3}$. This completes the proof. \Box

REFERENCES

- [1] H. Karami, S.M. Sheikholeslami, A. Khodkar, *Lower bounds on signed edge total domination numbers in graphs*, Czechoslovak Math. J. **3** (2008), 595–603.
- [2] W. Meng, *On signed edge domination in digraphs*, manuscript.
- [3] S.M. Sheikholeslami, *Signed total domination numbers of directed graphs*, Util. Math. **85** (2011), 273–279.
- [4] D.B. West, *Introduction to Graph Theory*, Prentice-Hall, Inc, 2000.
- [5] B. Xu, L. Yinquan, *On signed edge total domination numbers of graphs*, J. Math. Practice Theory **39** (2009), 1–7.
- [6] B. Zelinka, *On signed edge domination numbers of trees*, Math. Bohem. **127** (2002), 49–55.
- [7] J. Zhao, B. Xu, *On signed edge total domination numbers of graphs*, J. Math. Res. Exposition **2** (2011), 209–214.

Leila Asgharsharghi l.sharghi@azaruniv.ac.ir

Azarbaijan Shahid Madani University Department of Mathematics Tabriz, I.R. Iran

Abdollah Khodkar akhodkar@westga.edu

Department of Mathematics University of West Georgia Carrollton, GA 30118, USA

S.M. Sheikholeslami s.m.sheikholeslami@azaruniv.ac.ir

Azarbaijan Shahid Madani University Department of Mathematics Tabriz, I.R. Iran

Received: February 25, 2016. Revised: May 21, 2018. Accepted: May 22, 2018.