ON SIGNED ARC TOTAL DOMINATION IN DIGRAPHS

Leila Asgharsharghi, Abdollah Khodkar, and S.M. Sheikholeslami

Communicated by Andrzej Żak

Abstract. Let D = (V, A) be a finite simple digraph and $N(uv) = \{u'v' \neq uv \mid u = u' \text{ or } v = v'\}$ be the open neighbourhood of uv in D. A function $f : A \to \{-1, +1\}$ is said to be a signed arc total dominating function (SATDF) of D if $\sum_{e' \in N(uv)} f(e') \ge 1$ holds for every arc $uv \in A$. The signed arc total domination number $\gamma'_{st}(D)$ is defined as $\gamma'_{st}(D) = \min\{\sum_{e \in A} f(e) \mid f \text{ is an SATDF of } D\}$. In this paper we initiate the study of the signed arc total domination in digraphs and present some lower bounds for this parameter.

Keywords: signed arc total dominating function, signed arc total domination number, domination in digraphs.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper we continue the study of signed dominating functions in graphs and digraphs. Let G be a simple graph with edge set E(G) and let $N(e) = N_G(e)$ be the open neighborhood of the edge e. A signed edge total dominating function (SETDF) on a graph G is defined in [6] as a function $f : E(G) \to \{-1, 1\}$ such that $\sum_{e' \in N_G(e)} f(e') \ge 1$ for every $e \in E(G)$. The weight of an SETDF f on a graph G is $\omega(f) = \sum_{e \in E(G)} f(v)$. The signed edge total domination number $\gamma'_{st}(G)$ of G is the minimum weight of an SETDF on G. This concept has been studied by several authors (see, for example, [1, 5, 7]).

Let D be a finite simple digraph with vertex set V = V(D) and arc set A = A(D). A digraph without directed cycles of length 2 is an *oriented* graph. The order n = n(D) and the size m = m(D) of a digraph D is the number of its vertices and arcs, respectively. We write $d_D^+(v)$ for the out-degree of a vertex v and $d_D^-(v)$ for its in-degree. The minimum and maximum in-degrees and minimum and maximum out-degrees of D are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^-(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. If uv is an arc of D, then we also write $u \to v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. For each vertex $v \in V$, let $N_D^-(v)$ be the

© Wydawnictwa AGH, Krakow 2018

in-neighbor set which consists of all vertices of D from which arcs go into v and $N_D^+(v)$ be the out-neighbor set which consists of all vertices of D into which arcs go from v. The degree of a vertex u in D is defined by $d_D(u) = d_D^+(u) + d_D^-(u)$ and the minimum degree of D is $\delta(D) = \min\{d_D(u) \mid u \in V\}$. If $d_D(v) = 1$, then we call v a pendant vertex in D. If $X \subseteq V$, then D[X] is the subdigraph induced by X. For every $uv \in A$, we define $d_D(uv) = d_D^+(u) + d_D^-(v) - 2$ to be the degree of the arc uv in D. The minimum and maximum arc degrees of D are denoted by $\delta' = \delta'(D)$ and $\Delta' = \Delta'(D)$, respectively. An arc of D is said to be a pendant arc if it is incident with a pendant vertex in D. For $uv \in A$, define $N_D(uv) = N(uv) = \{u'v' \neq uv \mid u = u' \text{ or } v = v'\}$ as the open neighborhood of uv. An orientation of a graph G is a digraph obtained from G by replacing every edge of G with a directed edge.

For a real-valued function $f: A(D) \to R$, the weight of f is $\omega(f) = \sum_{e \in A(D)} f(e)$, and for $S \subseteq A(D)$, we define $f(S) = \sum_{e \in A(D)} f(e)$, so $\omega(f) = f(A(D))$. Consult [4] for the notation and terminology which are not defined here.

Recently, Meng [2] defined a signed edge dominating function (SEDF) on a digraph D as a function $f: A \to \{-1, 1\}$ such that $\sum_{e' \in N[e]} f(e') \ge 1$ for every $e \in A$, where $N[e] = N(e) \cup \{e\}$. The signed edge domination number $\gamma'_s(D)$ of D is the minimum weight of a signed edge dominating function on D. Following the ideas in [2] and [6], we initiate the study of signed arc total dominating functions in digraphs.

A function $f : A \to \{-1, +1\}$ is called a signed arc total dominating function (SATDF) on a digraph D, if $f(N(uv)) \ge 1$ for each arc $uv \in A$. The minimum of the values of $\omega(f) = f(A)$, taken over all SATDF f of D, is called the signed arc total domination number of D and denoted by $\gamma'_{st}(D)$. A $\gamma'_{st}(D)$ -function is an SATDF on D of weight $\gamma'_{st}(D)$. Obviously, $\gamma'_{st}(D)$ is defined only for digraphs D with $\delta' \ge 1$. In this note we initiate the study of the signed arc total domination in digraphs and present some (sharp) bounds for this parameter.

A nonempty digraph D with an SATDF f on D, denoted by (D, f), is called a signed arc total digraph. Let (D, f) be a signed arc total digraph and let u be an arbitrary vertex in D, then define

$$\begin{aligned} A^+(u^+,f) &= \{uv \in A \mid f(uv) = 1\}, \quad A^-(u^+,f) = \{uv \in A \mid f(uv) = -1\}, \\ A^+(u^-,f) &= \{vu \in A \mid f(vu) = 1\}, \quad A^-(u^-,f) = \{vu \in A \mid f(vu) = -1\}, \\ A_-(f) &= \{e \in A \mid f(e) = -1\}, \quad f(u^+) = |A^+(u^+,f)| - |A^-(u^+,f)|, \\ A_+(f) &= \{e \in A \mid f(e) = 1\}, \quad f(u^-) = |A^+(u^-,f)| - |A^-(u^-,f)|. \end{aligned}$$

We make use of the following observations in this paper.

Observation 1.1. If f is an SATDF on a digraph D of size m, then

(a) $\omega(f) = |A_+(f)| - |A_-(f)|,$ (b) $m = |A_+(f)| + |A_-(f)|,$ (c) $\gamma'_{st}(D) \equiv m \pmod{2}.$

Observation 1.2. Let e be an arc with degree at most 2 in D. If f is an SATDF on D, then f assigns 1 to each arc of N(e).

For every arc $e \in A$, define

 $A_{odd} = \{e \in A \mid d_D(e) \text{ is odd}\}$ and $A_{even} = \{e \in A \mid d_D(e) \text{ is even}\}.$

Denote $m_o = |A_{odd}|$ and $m_e = |A_{even}|$.

Observation 1.3. Let f be a signed arc total dominating function on D and $e \in A$. If $e \in A_{odd}$, then $\sum_{e' \in N(e)} f(e') \ge 1$ and $\sum_{e' \in N(e)} f(e') \ge 2$, when $e \in A_{even}$.

A directed graph is called connected if replacing all of its arcs with undirected edges produces a connected (undirected) graph.

Observation 1.4. If D_1, D_2, \ldots, D_s be the components of D, then

$$\gamma'_{st}(D) = \sum_{i=1}^{s} \gamma'_{st}(D_i).$$
(1.1)

Theorem 1.5. Let D be a digraph of size m. Then $\gamma'_{st}(D) = m$ if and only if for each arc $e \in A(D)$ there is an arc $e' \in N(e)$ such that $d_D(e') \leq 2$.

Proof. One side is clear by Observation 1.2. Let $\gamma'_{st}(D) = m$. Assume, to the contrary, there exists an arc $e = uv \in A(D)$ such that for every $e' \in N(e)$, $d_D(e') \geq 3$. It is easy to verify that the function $f : A(D) \to \{-1, 1\}$ that assigns -1 to uv and +1 to the remaining arcs, is an SATDF of D of weight m - 2, and so $\gamma'_{st}(D) \leq m - 2$, a contradiction. This completes the proof. \Box

Remark 1.6. We remark that the signed edge total domination and signed arc total domination are not comparable. If D_1 is an orientation of $K_{1,4}$ such that $d_{D_1}^+(w) = d_{D_1}^-(w)$, where w is the central vertex of $K_{1,4}$, then $\gamma'_{st}(D_1) = 4 > \gamma'_{st}(K_{1,4}) = 2$. If D_2 is an orientation of $K_{2,2}$ such that $\delta' \geq 1$, then $\gamma'_{st}(D_2) = \gamma'_{st}(K_{2,2}) = 4$. Let $U = \{u_1, u_2, u_3\}$ and $V = \{v_1, v_2, v_3\}$ be the partite sets of $K_{3,3}$ and let D_3 be an orientation of $K_{3,3}$ such that

$$A(D_3) = \{u_1v_i, v_ju_2, u_3v_i, u_2v_1 \mid 1 \le i \le 3, \ 2 \le j \le 3\}.$$

Define f on $A(D_3)$ by $f(u_1v_2) = f(u_3v_2) = -1$ and f(x) = 1 otherwise. Obviously, f is an SATDF on D_3 with weight 5. Thus $\gamma'_{st}(D_3) < \gamma'_{st}(K_{3,3}) = 7$.

2. BOUNDS ON THE SIGNED ARC TOTAL DOMINATION NUMBER

In this section, we present some lower bounds for the signed arc total domination number of a digraph D.

Theorem 2.1. For any digraph D of size $m \ge 2$ and $\delta' \ge 1$,

$$\gamma'_{st}(D) \ge \max\{\delta' + 3 - m, \Delta' + 1 - m\}.$$

Furthermore, this bound is sharp.

Proof. Let f be an SATDF on D and let $uv \in A$. Then f assigns 1 to at least $\lceil \frac{\delta'+1}{2} \rceil$ arcs in N(uv). Let $u'v' \in N(uv)$ such that f(u'v') = 1. Also f assigns 1 to at least $\lceil \frac{\delta'+1}{2} \rceil$ arcs in N(u'v'). Therefore

$$|A_{-}(f)| \le m - \frac{\delta' + 1}{2} - 1,$$

which implies that

$$\gamma_{st}'(D) = |A_+(f)| - |A_-(f)| \ge \frac{\delta' + 1}{2} + 1 - \left(m - \frac{\delta' + 1}{2} - 1\right) = \delta' + 3 - m,$$

as desired. Now let $uv \in A(D)$ be an arc with maximum arc degree in D, then

$$\frac{m + \gamma'_{st}(D)}{2} \ge |A_+(f)| \ge |A_+(f) \cap N(uv)| \ge \frac{\Delta' + 1}{2},$$

and this leads to $\gamma'_{st}(D) \ge \Delta' + 1 - m$. If D is an orientation of $K_{1,2}$ with central vertex v such that $d_D^+(v) = 2$, then obviously $\gamma'_{st}(D) = 2 = \delta' + 3 - m$. \Box

Theorem 2.2. Let D be a digraph with order n and size $m \ge 2$ with $\delta' \ge 1$. Then

$$\gamma_{st}'(D) \ge \frac{m - (\Delta^+ - \delta^+)(n - \delta^-)(\Delta^- - 1) - (\Delta^- - \delta^-)(n - \delta^+)(\Delta^+ - 1)}{\Delta^+ + \Delta^- - 2}$$

Proof. Let f be a $\gamma'_{st}(D)$ -function. We have

$$\gamma_{st}'(D) = |A_+(f)| - |A_-(f)| = \sum_{u \in V} |A^+(u^+, f)| - \sum_{u \in V} |A^-(u^+, f)| = \sum_{u \in V} f(u^+).$$
(2.1)

Similarly, we have

$$\gamma_{st}'(D) = |A_+(f)| - |A_-(f)| = \sum_{u \in V} |A^+(u^-, f)| - \sum_{u \in V} |A^-(u^-, f)| = \sum_{u \in V} f(u^-).$$
(2.2)

For an arbitrary $uv \in A$, $f(N(uv)) = f(u^+) + f(v^-) - 2f(uv) \ge 1$. Therefore,

$$m + 2\gamma'_{st}(D) \le \sum_{uv \in A} (f(u^+) + f(v^-) - 2f(uv)) + 2\sum_{uv \in A} f(uv)$$
$$= \sum_{uv \in A} (f(u^+) + f(v^-)) = \sum_{u \in V} f(u^+)d_D^+(u) + \sum_{v \in V} f(v^-)d_D^-(v)$$

Let

$$\begin{split} B^+_+ = & \{ u \in V \mid f(u^+) \geq 1 \}, \quad B^+_0 = \{ u \in V \mid f(u^+) = 0 \}, \quad B^+_- = \{ u \in V \mid f(u^+) \leq -1 \}, \\ B^-_+ = & \{ u \in V \mid f(u^-) \geq 1 \}, \quad B^-_0 = \{ u \in V \mid f(u^-) = 0 \}, \quad B^-_- = \{ u \in V \mid f(u^-) \leq -1 \}. \end{split}$$

Then by (2.1)-(2.3), we have

$$\begin{split} m+2\gamma_{st}'(D) &\leq \sum_{u \in V} f(u^+)d_D^+(u) + \sum_{v \in V} f(v^-)d_D^-(v) \\ &= \sum_{u \in B_+^+} f(u^+)d_D^+(u) + \sum_{u \in B_-^+} f(u^+)d_D^+(u) \\ &+ \sum_{v \in B_+^-} f(v^-)d_D^-(v) + \sum_{v \in B_-^-} f(v^-)d_D^-(v) \\ &\leq \Delta^+ \sum_{u \in B_+^+} f(u^+) + \delta^+ \sum_{u \in B_-^+} f(u^+) \\ &+ \Delta^- \sum_{v \in B_+^-} f(v^-) + \delta^- \sum_{v \in B_-^-} f(v^-) \\ &= \Delta^+ \sum_{u \in V} f(u^+) + (\delta^+ - \Delta^+) \sum_{u \in B_-^+} f(u^+) \\ &+ \Delta^- \sum_{v \in V} f(v^-) + (\delta^- - \Delta^-) \sum_{v \in B_-^-} f(v^-) \\ &= \Delta^+ \gamma_{st}'(D) + (\delta^+ - \Delta^+) \sum_{u \in B_-^+} f(u^+) \\ &+ \Delta^- \gamma_{st}'(D) + (\delta^- - \Delta^-) \sum_{v \in B_-^-} f(v^-). \end{split}$$

Hence

$$(\Delta^{+} + \Delta^{-} - 2)\gamma_{st}'(D) \ge m + (\Delta^{+} - \delta^{+}) \sum_{u \in B^{+}_{-}} f(u^{+}) + (\Delta^{-} - \delta^{-}) \sum_{v \in B^{-}_{-}} f(v^{-}).$$
(2.3)

For each $u \in B^+_-$ and $v \in N^+(u)$, we have $v \in B^-_+ \cup B^-_0$. Since

$$f(u^+) + f(v^-) - 2f(uv) \ge 1,$$

it follows that

$$\delta^+ \le |N^+(u)| \le |B^-_+| + |B^-_0| = n - |B^-_-|.$$

Therefore

$$|B_{-}^{-}| \le n - \delta^{+}. \tag{2.4}$$

Similarly, for each $v \in B_{-}^{-}$ and $u \in N^{-}(v)$, we have $u \in B_{+}^{+} \cup B_{0}^{+}$, which implies

$$|B_{-}^{+}| \le n - \delta^{-}.$$
 (2.5)

On the other hand, for each $u \in B^+_-$, there must be a vertex $v \in N^+(u)$ such that f(uv) = -1. Using this and the fact that $f(u^+) + f(v^-) - 2f(uv) \ge 1$, we get $f(u^+) + f(v^-) \ge -1$. Since $f(v^-) \le \Delta^- - 2$, we have

$$f(u^+) \ge 1 - \Delta^-. \tag{2.6}$$

Similarly, for each $v \in B_{-}^{-}$, we have

$$f(v^{-}) \ge 1 - \Delta^{+}. \tag{2.7}$$

Applying (2.3)–(2.7), we obtain

$$(\Delta^{+} + \Delta^{-} - 2)\gamma'_{st}(D) \ge m - (\Delta^{+} - \delta^{+})(n - \delta^{-})(\Delta^{-} - 1) - (\Delta^{-} - \delta^{-})(n - \delta^{+})(\Delta^{+} - 1)$$

as desired.

A digraph D is regular if $\Delta^+ = \delta^+ = \Delta^- = \delta^-$. As an application of Proposition 2.2, we obtain a lower bound on the signed arc total domination number for r-regular digraphs.

Corollary 2.3. If D is an r-regular digraph of size m with $r \ge 2$, then

$$\gamma'_{st}(D) \ge \left\lceil \frac{m}{2r-2} \right\rceil.$$

Theorem 2.4. For any digraph D of order n and size m,

$$\gamma'_{st}(D) \ge 2 \left\lceil \frac{m^2}{n(\Delta^+ + \Delta^- - 2)} - \frac{m_o}{2(\Delta^+ + \Delta^- - 2)} \right\rceil - m.$$

Proof. Let f be a $\gamma'_{st}(D)$ -function and let e = uv be an arc in D. If e is an arc of odd degree, then

$$|N(e) \cap A_{+}(f)| \ge \frac{1}{2}(d_{D}^{+}(u) + d_{D}^{-}(v) - 1)$$

and if e is an arc of even degree, then

$$|N(e) \cap A_{+}(f)| \ge \frac{1}{2}(d_{D}^{+}(u) + d_{D}^{-}(v)).$$

Thus

$$\sum_{e \in A} |N(e) \cap A_{+}(f)| \geq \frac{1}{2} \sum_{uv \in A} (d_{D}^{+}(u) + d_{D}^{-}(v)) - \frac{1}{2} m_{o}$$

$$= \frac{1}{2} \left(\sum_{u \in V} (d_{D}^{+}(u))^{2} + \sum_{v \in V} (d_{D}^{-}(v))^{2} \right) - \frac{1}{2} m_{o}$$

$$\geq \frac{1}{2n} \left[\left(\sum_{u \in V} d_{D}^{+}(u) \right)^{2} + \left(\sum_{v \in V} d_{D}^{-}(v) \right)^{2} \right] - \frac{1}{2} m_{o} = \frac{m^{2}}{n} - \frac{m_{o}}{2}.$$

On the other hand,

$$\begin{aligned} (\Delta^+ + \Delta^- - 2)|A_+(f)| &\geq \sum_{e \in A_+(f)} |N(e)| \\ &= \sum_{e \in A_+(f)} (|N(e) \cap A_+(f)| + |N(e) \cap A_-(f)|) \\ &= \sum_{e \in A_+(f)} |N(e) \cap A_+(f)| + \sum_{e \in A_+(f)} |N(e) \cap A_-(f)| \\ &= \sum_{e \in A_+(f)} |N(e) \cap A_+(f)| + \sum_{e \in A_-(f)} |N(e) \cap A_+(f)| \\ &= \sum_{e \in A} |N(e) \cap A_+(f)| \geq \frac{m^2}{n} - \frac{m_o}{2}. \end{aligned}$$

Since $\gamma'_{st}(D) = 2|A^+(f)| - m$, we get

$$\gamma'_{st}(D) \ge 2 \left[\frac{m^2}{n(\Delta^+ + \Delta^- - 2)} - \frac{m_o}{2(\Delta^+ + \Delta^- - 2)} \right] - m.$$

Theorem 2.5. Let D be a digraph of size m. Then

$$\gamma_{st}'(D) \ge \frac{(2+\delta'-\Delta')m+2m_e}{\delta'+\Delta'}.$$

Proof. Let f be a $\gamma'_{st}(D)$ -function and $\sum_{e \in A} d_D(e) = L$. By Observation 1.3, we have

$$\sum_{e \in A} \sum_{e' \in N(e)} f(e') = \sum_{e \in A_{even}} \sum_{e' \in N(e)} f(e') + \sum_{e \in A_{odd}} \sum_{e' \in N(e)} f(e')$$

$$\geq 2|A_{even}| + |A_{odd}| = m_e + m.$$
(2.8)

On the other hand,

$$\sum_{e \in A} \sum_{e' \in N(e)} f(e') = \sum_{e \in A} d_D(e) f(e) = \sum_{e \in A_+(f)} d_D(e) f(e) + \sum_{e \in A_-(f)} d_D(e) f(e)$$
$$= \sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A_-(f)} d_D(e) = 2 \sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A} d_D(e)$$
$$\leq 2\Delta' |A_+(f)| - L.$$
(2.9)

Similarly, we have

$$\sum_{e \in A} \sum_{e' \in N(e)} f(e') = \sum_{e \in A} d_D(e) f(e) = \sum_{e \in A_+(f)} d_D(e) f(e) + \sum_{e \in A_-(f)} d_D(e) f(e)$$
$$= \sum_{e \in A_+(f)} d_D(e) - \sum_{e \in A_-(f)} d_D(e) = \sum_{e \in A} d_D(e) - 2 \sum_{e \in A_-(f)} d_D(e)$$
$$\leq \sum_{e \in A} d_D(e) - 2|A_-(f)|\delta' = L - 2(m - |A_+(f)|)\delta'.$$
(2.10)

By (2.8)-(2.10), we deduce the following inequalities:

$$m + m_e + L \le 2\Delta' |A_+(f)|$$
 and $m + 2m\delta' + m_e - L \le 2\delta' |A_+(f)|$. (2.11)

Summing the inequalities in (2.11), we have

$$|A_+(f)| \ge \frac{(1+\delta')m + m_e}{\delta' + \Delta'},$$

and hence

$$\gamma'_{st}(D) = 2|A_+(f)| - m \ge \frac{(2+\delta'-\Delta')m + 2m_e}{\delta'+\Delta'}.$$

Theorem 2.6. Let D be a digraph of size m with the arc degree sequence $d'_1 \ge d'_2 \ge \ldots \ge d'_m$. Then

$$\gamma'_{st}(D) \ge 2 \Big[\frac{m + m_e + L - 2L_t + 2td'_{t+1}}{2d'_{t+1}} \Big] - m,$$

where $t = \max\{\left\lceil \frac{m(1+2\delta')-L+m_e}{2\delta'}\right\rceil, \left\lceil \frac{m+L+m_e}{2\Delta'}\right\rceil\}, L_t = \sum_{i=1}^t d'_i \text{ and } L = \sum_{e \in A} d_D(e).$ Proof. Let f be a $\gamma'_{st}(D)$ -function on D. From (2.11), we have

$$|A_+(f)| \ge \frac{m+L+m_e}{2\Delta'}, \quad |A_+(f)| \ge \frac{m(1+2\delta')-L+m_e}{2\delta'}.$$

 \mathbf{So}

$$|A_{+}(f)| \geq t = \max\left\{ \left\lceil \frac{m(1+2\delta') - L + m_{e}}{2\delta'} \right\rceil, \left\lceil \frac{m + L + m_{e}}{2\Delta'} \right\rceil \right\}.$$

It follows from inequality (2.8) and the inequality chain (2.9) that

$$\begin{split} m+m_{e} &\leq 2\sum_{e \in A_{+}(f)} d_{D}(e) - \sum_{e \in A} d_{D}(e) \\ &\leq 2\left(\sum_{i=1}^{t} d'_{i} + (|A_{+}(f)| - t)d'_{t+1}\right) - L \\ &= 2\left(L_{t} + (|A_{+}(f)| - t)d'_{t+1}\right) - L. \end{split}$$

Therefore

$$|A_{+}(f)| \ge \left\lceil \frac{m + m_{e} + L - 2L_{t} + 2td'_{t+1}}{2d'_{t+1}} \right\rceil$$

and hence

$$\gamma'_{st}(D) = 2|A_+(f)| - m \ge 2\left\lceil \frac{m + m_e + L - 2L_t + 2td'_{t+1}}{2d'_{t+1}} \right\rceil - m.$$

Theorem 2.7. For every simple connected digraph D with $2 \le \delta' \le \Delta' \le 6$, $\gamma'_{st}(D) \ge 0$. *Proof.* Let f be a $\gamma'_{st}(D)$ -function. Since $2 \le \delta' \le \Delta' \le 6$, we have $|N_D(e) \cap A_+(f)| \ge 2$ and $|N_D(e) \cap A_-(f)| \le 2$. Now it is clear that

$$2|A_{-}(f)| \le \sum_{e \in A_{-}(f)} |N_{D}(e) \cap A_{+}(f)| = \sum_{e \in A_{+}(f)} |N_{D}(e) \cap A_{-}(f)| \le 2|A_{+}(f)|.$$

Thus $|A_{-}(f)| \leq |A_{+}(f)|$ and hence, $\gamma'_{st}(D) = |A_{+}(f)| - |A_{-}(f)| \geq 0$.

3. SIGNED ARC TOTAL DOMINATION IN ORIENTED GRAPHS

Let G be the complete bipartite graph $K_{2,3}$ with bipartite sets $V = \{v_1, v_2\}$ and $U = \{u_1, u_2, u_3\}$. Let D_1 be an orientation of G such that all arcs go from V into U and let D_2 be an orientation of G such that $A(D_2) = \{(v_1, u_j), (u_j, v_2) \mid j = 1, 2, 3\}$. It is easy to see that $\gamma'_{st}(D_1) = 2$ and $\gamma'_{st}(D_2) = 6$. Therefore, two distinct orientations of a graph can have different signed total arc domination numbers. Motivated by this observation, we define lower orientable signed total arc domination number dom'_{st}(G) and upper orientable signed total arc domination number $\text{Dom}'_{st}(G)$ of a graph G as follows:

$$\operatorname{dom}_{st}'(G) = \min\{\gamma_{st}'(D) \mid D \text{ is an orientation of } G \text{ with } \delta' \ge 1\},\$$

and

$$\operatorname{Dom}_{st}'(G) = \max\{\gamma_{st}'(D) \mid D \text{ is an orientation of } G \text{ with } \delta' \ge 1\}.$$

An immediate consequence of Proposition 1.5 now follows.

Corollary 3.1. For $n \ge 3$, $\dim'_{st}(P_n) = n - 1$, $\dim'_{st}(C_n) = n$.

Proposition 3.2. If $G = K_{1,m}$ is a star, then $\operatorname{dom}'_{st}(K_{1,m}) = \begin{cases} 3 & m \text{ is odd,} \\ 2 & m \text{ is even.} \end{cases}$

Proof. Consider the graph $K_{1,m}$ with bipartite sets $\{v_1\}$ and $\{u_1, u_2, \ldots, u_m\}$. Let D be an orientation of $K_{1,m}$ and let f be a $\gamma'_{st}(D)$ -function. If $d_D^+(v_1) = 0$ or $d_D^-(v_1) = 0$, then $|A_-(f)| = (m-2)/2$ if m is even and $|A_-(f)| = (m-3)/2$ if m is odd. Hence, $\gamma'_{st}(D) = 2$ if m is even and $\gamma'_{st}(D) = 3$ if m is odd. Suppose that $d_D^+(v_1)$ and $d_D^-(v_1) \ge 1$. If either $d_D^+(v_1) = 1$ or $d_D^-(v_1) = 1$, then there is an arc $e = v_1 u_i$ with $d_D(e) = 0$, a contradiction. So $d_D^+(v_1)$ and $d_D^-(v_1) \ge 2$. Let, without loss of generality, that $u_1 \in N^+(v_1)$ and $u_2 \in N^-(v_1)$. If m is odd, then either $f(N(v_1 u_1)) \ge 2$ or $f(N(u_2 v_1)) \ge 2$. Thus $\gamma'_{st}(D) \ge 3$. If m is even, since $f(N(v_1 u_1)) \ge 1$ and $f(N(u_2 v_1)) \ge 1$, it follows that $\gamma'_{st}(D) \ge 2$. This completes the proof.

Lemma 3.3. For $m \ge 2$, $\gamma'_{st}(K_{2,m}) = \begin{cases} 4 & \text{if } m \text{ is even,} \\ 2 & \text{if } m \text{ is odd.} \end{cases}$

Proof. Let $X = \{u_1, u_2\}$ and $Y = \{v_1, v_2, \dots, v_m\}$ be the partite sets of $K_{2,m}$ and let f be a $\gamma'_{st}(K_{2,m})$ -function. We consider two cases.

Case 1. m is odd. Since

$$f(N(u_1v_1)) = f(u_2v_1) + \sum_{i=2}^m f(u_1v_i) \ge 1$$

and

$$f(N(u_2v_1)) = f(u_1v_1) + \sum_{i=2}^m f(u_2v_i) \ge 1,$$

we have

$$\omega(f) = \sum_{i=1}^{m} f(u_1 v_i) + \sum_{i=1}^{m} f(u_2 v_i) = f(N(u_1 v_1)) + f(N(u_2 v_1)) \ge 2$$

Define $g: E(K_{2,m}) \to \{-1,1\}$ by $g(u_1v_1) = g(u_2v_1) = 1$ and $g(u_1v_i) = g(u_2v_i) = (-1)^i$ for $2 \leq i \leq m$. Obviously, g is an SETDF of $K_{2,m}$ of weight 2 and so $\gamma'_{st}(K_{2,m}) \leq 2$. Therefore $\gamma'_{st}(K_{2,m}) = 2$.

Case 2. m is even.

Define $g: E(K_{2,m}) \to \{-1, 1\}$ by $g(u_i v_1) = g(u_i v_2) = 1$ for i = 1, 2 and $g(u_1 v_i) = g(u_2 v_i) = (-1)^i$ for $3 \le i \le m$. Obviously g is an SETDF of $K_{2,m}$ of weight 4 and hence $\gamma'_{st}(K_{2,m}) \le 4$. Now we show that $\gamma'_{st}(K_{2,m}) = 4$. Since m is even, $f(N(u_1 v_1)) \ge 2$ and $f(N(u_2 v_1)) \ge 2$. Hence,

$$\omega(f) = f(N(u_1v_1)) + f(N(u_2v_1)) \ge 4.$$

Therefore $\gamma'_{st}(K_{2,m}) = 4.$

Proposition 3.4. For $m \ge 2$, $\operatorname{dom}'_{st}(K_{2,m}) = \begin{cases} 2 & \text{if } m \text{ is odd,} \\ 4 & \text{if } m \text{ is even.} \end{cases}$

Proof. Let $U = \{u_1, u_2\}$ and $V = \{v_1, v_2, \ldots, v_m\}$ be the partite sets of $K_{2,m}$, D be an orientation on $K_{2,m}$ and f be a $\gamma'_{st}(D)$ -function. If $d_D^+(v_i) = 2$ (or $d_D^-(v_i) = 2$) for each $1 \leq i \leq m$, then we are done by Lemma 3.3. Without loss of generality, suppose that $d_D^+(u_1) \geq d_D^-(u_1)$. We distinguish two cases.

Case 1. $d_D^+(v_i) = d_D^-(v_i) = 1$, for some *i*, say i = 1. Without loss of generality, suppose that $u_1v_1, v_1u_2 \in A(D)$. Since $f(N(u_1v_1)) \ge 1$, there is at least one arc $e' \in N(u_1v_1)$ such that f(e') = 1. Similarly, there is an arc $e'' \in N(v_1u_2)$ such that f(e'') = 1. Since

$$|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| \le 1$$

and

$$|N(e'') \cap (\{v_i u_1 \mid v_i u_1 \in A(D)\})| \le 1,$$

we have

$$\begin{split} \gamma_{st}'(D) &\geq \sum_{u_2 v_i \in A(D)} f(u_2 v_i) + f(e') + f(N(e')) + f(e'') + f(N(e'')) \\ &+ \sum_{v_i u_1 \in A(D)} f(v_i u_1) - 2 \\ &\geq 4 - 2 = 2. \end{split}$$

Hence, if m is odd, then the statement is true. Assume that m is even. If either |N(e')| and |N(e'')| are even or

$$|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| = |N(e'') \cap (\{v_iu_1 \mid v_iu_1 \in A(D)\})| = 0,$$

then by an argument similar to that described above we get $\gamma'_{st}(D) \ge 4$. We consider two subcases.

Subcase 1.1. |N(e')| is odd and $|N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\})| = 1$ (the case |N(e'')| is odd and $|N(e'') \cap (\{v_iu_1 \mid v_iu_1 \in A(D)\})| = 1$ is similar). Then $|N(u_1v_1)|$ is even. Let

$$\{x\} = N(e') \cap (\{u_2v_i \mid u_2v_i \in A(D)\}).$$

If f(x) = -1, then $\sum_{u_1v_i \in A(D)} f(u_1v_i) \geq 3$ and $\sum_{u_2v_i \in A(D)} f(u_2v_i) \geq -1$ and if f(x) = 1, then $\sum_{u_1v_i \in A(D)} f(u_1v_i) \geq 1$ and $\sum_{u_2v_i \in A(D)} f(u_2v_i) \geq 1$. Consequently, $\sum_{u_1v_i \in A(D)} f(u_1v_i) + \sum_{u_2v_i \in A(D)} f(u_2v_i) \geq 2$. Moreover, since $f(N(e'')) \geq 1$, we have $\sum_{v_iu_2 \in A(D)} f(v_iu_2) \geq 1$. If there is an arc $y = v_iu_1$ (note that since m and $|N(u_1v_1)|$ are even, there is at least one arc v_iu_1 in A(D)) such that f(y) = 1, then $\sum_{v_iu_i \in A(D)} f(v_iu_1) \geq 1$. Therefore

$$\gamma_{st}'(D) = \sum_{u_1 v_i \in A(D)} f(u_1 v_i) + \sum_{u_2 v_i \in A(D)} f(u_2 v_i) + \sum_{v_i u_1 \in A(D)} f(v_i u_1) + \sum_{v_i u_2 \in A(D)} f(v_i u_2) \geq 4.$$

Suppose that $f(v_iu_1) = -1$ for each $v_iu_1 \in A(D)$. Then $d_D^-(u_1) = 1$. Without loss of generality, suppose that $\{v_m\} = N_D^-(u_1)$. Since $\sum_{e \in N(v_mu_1)} f(e) \ge 1$, we have $f(v_mu_2) = 1$ and since $f(N(v_mu_2)) \ge 1$, we have $\sum_{v_iu_2 \in A(D)} f(v_iu_2) \ge 3$. Therefore,

$$\gamma_{st}'(D) = \sum_{u_1v_i \in A(D)} f(u_1v_i) + \sum_{u_2v_i \in A(D)} f(u_2v_i) + f(v_mu_1) + \sum_{v_iu_2 \in A(D)} f(v_iu_2) \ge 4.$$

Subcase 1.2. |N(e')| is odd and $|N(e'') \cap (\{v_i u_1 \mid v_i u_1 \in A(D)\})| = 1$ (the case |N(e'')| is odd and $|N(e') \cap (\{u_2 v_i \mid u_2 v_i \in A(D)\})| = 1$ is similar).

Let $\{z\} = N(e'') \cap (\{v_i u_1 \mid v_i u_1 \in A(D)\})$. If f(z) = -1, then $\sum_{v_i u_2 \in A(D)} f(v_i u_2) \ge 3$ and $\sum_{v_i u_1 \in A(D)} f(v_i u_1) \ge -1$ and if f(z) = 1, then $\sum_{v_i u_2 \in A(D)} f(v_i u_2) \ge 1$ and $\sum_{v_i u_1 \in A(D)} f(v_i u_1) \ge 1$. Hence, $\sum_{v_i u_1 \in A(D)} f(v_i u_1) + \sum_{v_i u_2 \in A(D)} f(v_i u_2) \ge 2$. If $d_D^+(u_2) = 0$, since $f(N(e')) \ge 1$, then $\sum_{u_1 v_i \in A(D)} f(u_1 v_i) \ge 2$ and if there is an arc $y = u_2 v_i$ such that f(y) = 1, then $\sum_{u_2 v_i \in A(D)} f(u_2 v_i) \ge 1$. Therefore

$$\gamma_{st}'(D) = \sum_{u_1 v_i \in A(D)} f(u_1 v_i) + \sum_{u_2 v_i \in A(D)} f(u_2 v_i) + \sum_{v_i u_1 \in A(D)} f(v_i u_1) + \sum_{v_i u_2 \in A(D)} f(v_i u_2)$$

$$\geq 4.$$

Suppose that $f(u_2v_i) = -1$ for each $u_2v_i \in A(D)$. Then $d_D^+(u_2) = 1$. Without loss of generality, suppose that $\{v_m\} = N_D^+(u_2)$. Then $f(u_1v_m) = 1$ and $\sum_{u_1v_i \in A(D)} f(u_1v_i) \geq 3$. Therefore,

$$\gamma_{st}'(D) = \sum_{u_1v_i \in A(D)} f(u_1v_i) + f(u_2v_m) + \sum_{v_iu_1 \in A(D)} f(v_iu_1) + \sum_{v_iu_2 \in A(D)} f(v_iu_2)) \ge 4.$$

Case 2. $d_D^+(v_i) = 2$ and $d_D^-(v_j) = 2$, for some i, j. Without loss of generality, suppose that $d_D^+(v_i) = 2$ for $1 \le i \le t$ and $d_D^-(v_j) = 2$ for $t+1 \le j \le m$. Then by Lemma 3.3,

$$\gamma'_{st}(D) = \gamma'_{st}(K_{2,t}) + \gamma'_{st}(K_{2,m-t}) \ge 2 + 2 = 4.$$

This completes the proof.

Theorem 3.5. For any integer t, there is a graph G with $\operatorname{dom}'_{st}(G) = -t$.

Proof. For a given positive integer $r \ge 4$, let T be a graph that obtained from a star $K_{1,r}$ by subdividing all of its edges once and let G be the graph obtained from t+1 copies of T with central vertices $v_1, v_2, \ldots, v_{t+1}$ by adding the edges $v_1v_2, v_2v_3, \ldots, v_tv_{t+1}$ (see Figure 1).

Fig. 1. A digraph with $\gamma'_{st}(D) = -4$

Let $\{v_j, v_{i,j}, u_{i,j} \mid 1 \leq i \leq t\}$ be the vertex set of *j*th copy of *T*, where $N(v_{i,j}) = \{v_j, u_{i,j}\}$ and $u_{i,j}$ are leaves for each *i*. Let *D* be an arbitrary orientation of *G* and let *f* be a $\gamma'_{st}(D)$ -function. Clearly, either $d_D^+(v_{i,j}) = 2$ or $d_D^-(v_{i,j}) = 2$ for each *i*, *j* because $\delta' \geq 1$. In both cases, *f* assigns +1 to each non-pendant arc of each copy of *T*.

Since the least possible weight for f will be achieved if f(e) = -1 for each other arcs, we have $\omega(f) \ge (t+1)r - (t+1)r - t = -t$. In order to show that $\operatorname{dom}'_{st}(G) \le -t$, let D be an orientation of G such that

$$A(D) = \{ (v_j, v_{j+1}), (v_j, v_{i,j}), (u_{i,j}, v_{i,j}) : 1 \le i \le r, 1 \le j \le t \},\$$

as illustrated in Figure 1 for t = 4. Define $f : A(D) \to \{-1, 1\}$ by $f(v_j v_{i,j}) = +1$ and $f(v_j, v_{j+1}) = f(u_{i,j} v_{i,j}) = -1$ for $1 \le i \le r$ and $1 \le j \le t$. Obviously, f is an SATDF on D of weight -t. Therefore, $\operatorname{dom}'_{st}(G) = -t$.

Theorem 3.6. If T is a tree of order $n \ge 3$, then

$$\operatorname{dom}_{st}'(T) \ge \frac{7-n}{3}.$$

Furthermore, this bound is sharp.

Proof. The proof is by induction on n. The statement holds for all trees of order n = 3, 4, 5. Assume T is a tree of order $n \ge 6$ and that the statement holds for all trees with smaller orders. Let D be an arbitrary orientation of T with $\delta' \ge 1$ and let f be a $\gamma'_{st}(D)$ -function. We consider two cases.

Case 1. There is a non-pendant arc, say $e = uv \in A(D)$, for which f(e) = -1. Let D_1 and D_2 be the components of D - e with $u \in D_1$ and $v \in D_2$. Obviously, the order of D_1 and D_2 are greater than 3 and $\gamma'_{st}(D) = f(A(D_1)) - 1 + f(A(D_2))$. For i = 1, 2, the function f, restricted to D_i , is an SATDF of D_i , and so $\gamma'_{st}(D_i) \leq f(A(D_i))$. By the inductive hypothesis,

$$\gamma_{st}'(D_i) \ge \frac{7 - |A(D_i)|}{3}.$$

Thus

$$\gamma_{st}'(D) \ge -1 + \frac{7 - |A(D_1)|}{3} + \frac{7 - |A(D_2)|}{3} = \frac{11 - n}{3} > \frac{7 - n}{3}.$$

Case 2. The only arcs e for which f(e) = -1 are pendant arcs. Then $f(v^+) \ge 0$ for each $v \in V(D)$ with $d_D^+(v) \ge 2$ and $f(v^-) \ge 0$ for each $v \in V(D)$ with $d_D^-(v) \ge 2$. Let

$$P_D^+ = \{ v \in V(D) \mid d_D^+(v) \ge 2 \text{ and } f(v^+) = 0 \} \text{ and } P_D^- = \{ v \in V(D) \mid d_D^-(v) \ge 2 \text{ and } f(v^-) = 0 \}.$$

First, let $P_D^+ = P_D^- = \emptyset$. Then f is an SEDF of D. Hence, $\gamma'_s(D) \ge |V(D)| - |A(D)|$ (see [2]). Since $n \ge 6$ and |V(D)| = |A(D)| + 1, it follows that

$$\gamma'_{st}(D) = f(A(D)) \ge \gamma'_s(D) \ge 1 > \frac{7-n}{3}.$$

Without loss of generality, suppose that $P_D^+ \neq \emptyset$. Let $P_D^+ = \{u_1, u_2, \ldots, u_k\}$. Obviously, there is no +1 pendant arc out from u_i for each *i*. Let

$$M_D^+(u_i) = \{ u \in N_D^+(u_i) \mid d_D^-(u) \ge 2 \}.$$

Let first $|M_D^+(u_i)| \geq 2$ for some *i*. Without loss of generality we may assume $|M_D^+(u_1)| \geq 2$ and $v_1, v_2 \in M_D^+(u_1)$. Let D_1 and D_2 be the connected components of $D - u_1v_1$ for which $v_1 \in V(D_1)$. Let D'_1 be obtained from D_1 by adding a new pendant arc w_1v_1 and let D'_2 be obtained from D_2 by deleting one of the -1 pendant arcs out from u_1 . Now define $g: A(D'_1) \to \{-1, +1\}$ by $g(w_1v_1) = +1$ and g(e) = f(e) if $e \in A(D_1)$. Obviously, g is an SATDF of D'_1 and $f|_{D'_2}$ is an SATDF of D'_2 . By the inductive hypothesis,

$$\gamma'_{st}(D'_i) \ge \frac{7 - |A(D'_i)|}{3}.$$

Thus

$$\begin{aligned} \gamma_{st}'(D) &= f(A(D)) = g(A(D_1')) + f|_{D_2'}(A(D_2')) - 1 \\ &\geq -1 + \frac{7 - |A(D_1')|}{3} + \frac{7 - |A(D_2')|}{3} > \frac{7 - n}{3}. \end{aligned}$$

Now let $M_D^+(u_i) = \{v_i\}$ for each $1 \le i \le k$. Since $f(N(u_iv_i)) \ge 1$, we have $f(v_i^-) \ge 3$ for each *i*. Let D' be obtained from D by deleting all pendant vertices and the vertices of P_D^+ . We distinguish three subcases.

Subcase 2.1. $d_{D'}^-(v_1) \geq 1$, $e = vv_1 \in A(D')$ and $f(v^+) = 1$ in D. By the construction of D' we have $d_D^+(v) \geq 3$. Since $f(v^+) = 1$ and all arcs in D' are +1 arcs, there exists a pendant arc e' out from v in D, say e' = vz. Let D_1 and D_2 be the connected components of D - e containing v_1 and v, respectively. Let D'_1 be obtained from D_1 by adding a new pendant arc $v'v_1$ at v_1 and $D'_2 = D_2 - z$. It is easy to see that the order of D'_1 and D'_2 are greater than 3. Define $g : A(D'_1) \to \{-1, +1\}$ by $g(v'v_1) = 1$ and g(e) = f(e) if $e \in A(D_1)$. Obviously, g and $f|_{D'_2}$ are SATDFs of D'_1 and D'_2 , respectively. By the inductive hypothesis,

$$\gamma_{st}'(D_i') \ge \frac{7 - |V(D_i)|}{3}.$$

Thus

$$\begin{split} \gamma_{st}'(D) &= f(A(D)) = g(A(D_1')) + f|_{D_2'}(A(D_2')) - 1\\ &\geq -1 + \frac{7 - |V(D_1')|}{3} + \frac{7 - |V(D_2')|}{3} > \frac{7 - n}{3} \end{split}$$

Subcase 2.2. $d_{D'}^{-}(v_1) \ge 1$, $e = vv_1 \in A(D')$ and $f(v^+) \ge 2$ in D. Let D_1 and D_2 be the connected components of D - e. Let D'_1 and D'_2 be obtained from D_1 and D_2 by adding new pendant arcs $v'v_1$ and vv'', respectively. Define $a_1 \ge A(D') \ge f_{-1} \pm 1$ by $a_2(v'v_1) = 1$ and $a(v_1) = f(v_1)$ if $v \in A(D_1)$ and

Define $g_1 : A(D'_1) \to \{-1, +1\}$ by $g_1(v'v_1) = 1$ and g(e) = f(e) if $e \in A(D_1)$, and $g_2 : A(D'_2) \to \{-1, +1\}$ by g(vv'') = 1 and g(e) = f(e) if $e \in A(D_2)$. Obviously, g_i is an SATDF of D'_i for i = 1, 2. In addition, we have $|V(D'_1)| + |V(D'_2)| = n + 2$. By the inductive hypothesis,

$$\gamma_{st}'(D) = f(A(T)) = g_1(A(D_1')) + g_2(A(D_2')) - 1 > \frac{7-n}{3}.$$

Subcase 2.3. $d_{D'}^{-}(v_1) = 0.$

This implies that $u_i v_1 \in A(D)$ for each $1 \leq i \leq k$. If there exist two pendant arcs at v_1 , say $e' = xv_1$, $e'' = yv_1$, such that f(e') = -1 and f(e'') = 1, then using the inductive hypothesis on $D - \{x, y\}$ we have

$$\gamma_{st}'(D) \geq \frac{7 - (n - 2)}{3} > \frac{7 - n}{3}.$$

Let r be the number of pendant in-neighbors of v_1 . By assumption $k - r = f(v_1^-) \ge 3$. Furthermore, since $f(u_i^+) = 0$, there exists a pendant arc $u_i w_i$ for each i. Therefore, $n \ge 2k + r + 1$ and hence, $r \le \frac{n-7}{3}$. If D_1 is the subdigraph induced by $(\bigcup_{i=1}^k N_D^+(u_i)) \cup N_D^-(v_1)$, then $\omega(f|_{D_1}) = -r$. Now let D_2 be the digraph obtained from D by deleting all arcs of D_1 and all the isolated vertices. If $|V(D_2)| = 0$, then $D = D_1$ and we are done. Let $|V(D_2)| \ne 0$. Since D is an oriented tree, it is easy to verify that D_2 has t components, where $t = |V(D_1) \cap V(D_2)|$. Since the order of each component of D_2 is greater than 2, by the induction hypothesis and Observation 1.4, we have

$$\gamma_{st}'(D_2) \ge \frac{7t - |V(D_2)|}{3}$$

Therefore

$$\gamma_{st}'(D) \ge \gamma_{st}'(D_1) + \gamma_{st}'(D_2) \ge \frac{7 - |V(D_1)|}{3} + \frac{7t - |V(D_2)|}{3}$$
$$= \frac{7(t+1) - (n+t)}{3} > \frac{7-n}{3}.$$

In order to show the sharpness of the lower bound, let D be a digraph with vertex set

$$V(D) = \{w, u_i, v_i, w_j \mid 1 \le i \le k, \ k \ge 3 \text{ and } 1 \le j \le k - 3\},\$$

and arc set

$$A(D) = \{ww_j, wu_i, v_iu_i \mid 1 \le i \le k \text{ and } 1 \le j \le k-3\}$$

(see Figure 2).

Fig. 2. Digraph D with k = 7

Define $f : A(D) \to \{-1, 1\}$ by $f(ww_j) = f(v_iu_i) = -1$ and $f(wu_i) = 1$ for each $1 \le i \le k$ and $1 \le j \le k - 3$. Clearly, f is an SATDF of D with weight $\frac{7-n}{3}$. This completes the proof.

REFERENCES

- H. Karami, S.M. Sheikholeslami, A. Khodkar, Lower bounds on signed edge total domination numbers in graphs, Czechoslovak Math. J. 3 (2008), 595–603.
- [2] W. Meng, On signed edge domination in digraphs, manuscript.
- [3] S.M. Sheikholeslami, Signed total domination numbers of directed graphs, Util. Math. 85 (2011), 273–279.
- [4] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
- [5] B. Xu, L. Yinquan, On signed edge total domination numbers of graphs, J. Math. Practice Theory 39 (2009), 1–7.
- [6] B. Zelinka, On signed edge domination numbers of trees, Math. Bohem. 127 (2002), 49-55.
- [7] J. Zhao, B. Xu, On signed edge total domination numbers of graphs, J. Math. Res. Exposition 2 (2011), 209–214.

Leila Asgharsharghi l.sharghi@azaruniv.ac.ir

Azarbaijan Shahid Madani University Department of Mathematics Tabriz, I.R. Iran

Abdollah Khodkar akhodkar@westga.edu

Department of Mathematics University of West Georgia Carrollton, GA 30118, USA

S.M. Sheikholeslami s.m.sheikholeslami@azaruniv.ac.ir

Azarbaijan Shahid Madani University Department of Mathematics Tabriz, I.R. Iran

Received: February 25, 2016. Revised: May 21, 2018. Accepted: May 22, 2018.