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Abstract. Let D = (V, A) be a finite simple digraph and N(uv) = {u'v' # wv | u = o’
or v = v’} be the open neighbourhood of wv in D. A function f : A — {—1,+1} is
said to be a signed arc total dominating function (SATDF) of D if Ze,ewuv) feh) >1
holds for every arc uv € A. The signed arc total domination number v, (D) is defined as
Yet(D) =min{}"__, f(e) | f is an SATDF of D}. In this paper we initiate the study of the
signed arc total domination in digraphs and present some lower bounds for this parameter.
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1. INTRODUCTION

In this paper we continue the study of signed dominating functions in graphs and
digraphs. Let G be a simple graph with edge set E(G) and let N(e) = Ng(e) be
the open neighborhood of the edge e. A signed edge total dominating function
(SETDF) on a graph G is defined in [6] as a function f : E(G) — {—1,1} such
that >, c g (o) f(€') 2 1 for every e € E(G). The weight of an SETDF f on a graph
Gisw(f) =2 .cpq f(v). The signed edge total domination number v;,(G) of G is
the minimum weight of an SETDF on G. This concept has been studied by several
authors (see, for example, [1,5,7]).

Let D be a finite simple digraph with vertex set V' = V(D) and arc set A = A(D).
A digraph without directed cycles of length 2 is an oriented graph. The order n = n(D)
and the size m = m(D) of a digraph D is the number of its vertices and arcs,
respectively. We write d (v) for the out-degree of a vertex v and d, (v) for its in-degree.
The minimum and maximum in-degrees and minimum and maximum out-degrees
of D are denoted by §= = 6= (D), A~ = A~(D), §t* = 67 (D) and AT = AT(D),
respectively. If uv is an arc of D, then we also write u — v, and we say that v is an
out-neighbor of u and w is an in-neighbor of v. For each vertex v € V, let N, (v) be the

© Wydawnictwa AGH, Krakow 2018 779



780 Leila Asgharsharghi, Abdollah Khodkar, and S.M. Sheikholeslami

in-neighbor set which consists of all vertices of D from which arcs go into v and N (v)
be the out-neighbor set which consists of all vertices of D into which arcs go from wv.
The degree of a vertex u in D is defined by dp(u) = d},(u) + d(u) and the minimum
degree of D is §(D) = min{dp(u) | v € V}. If dp(v) = 1, then we call v a pendant
vertex in D. If X C V| then D[X] is the subdigraph induced by X. For every uv € A,
we define dp(uv) = df(u) + dp(v) — 2 to be the degree of the arc uv in D. The
minimum and mazimum arc degrees of D are denoted by ¢’ = §'(D) and A’ = A'(D),
respectively. An arc of D is said to be a pendant arc if it is incident with a pendant
vertex in D. For uwv € A, define Np(uv) = N(uwv) = {u/v' #uv |u=u" or v =2'} as
the open neighborhood of uv. An orientation of a graph G is a digraph obtained from
G by replacing every edge of G with a directed edge.

For a real-valued function f : A(D) — R, the weight of f is w(f) =>_.c 4(p) f(€),
and for S C A(D), we define f(S) = X" csp) f(€), so w(f) = f(A(D)). Consult [4]
for the notation and terminology which are not defined here.

Recently, Meng [2] defined a signed edge dominating function (SEDF) on a digraph
D as a function f: A — {—1,1} such that 3, . f(€') = 1 for every e € A, where
Nle] = N(e) U {e}. The signed edge domination number v.(D) of D is the minimum
weight of a signed edge dominating function on D. Following the ideas in [2] and [6],
we initiate the study of signed arc total dominating functions in digraphs.

A function f : A — {—1,41} is called a signed arc total dominating function
(SATDF) on a digraph D, if f(N(uv)) > 1 for each arc uv € A. The minimum of the
values of w(f) = f(A), taken over all SATDF f of D, is called the signed arc total
domination number of D and denoted by ~.,(D). A ~%,(D)-function is an SATDF on
D of weight v.,(D). Obviously, 7.,(D) is defined only for digraphs D with ¢’ > 1. In
this note we initiate the study of the signed arc total domination in digraphs and
present some (sharp) bounds for this parameter.

A nonempty digraph D with an SATDF f on D, denoted by (D, f), is called
a signed arc total digraph. Let (D, f) be a signed arc total digraph and let u be an
arbitrary vertex in D, then define

At (ut,

fl={we Al fluw) =1}, A~(u", f) ={w e A| f(w) = -1},
( 7f)—{vu€z4\f(W) 1}, A (u, f) = {vue A] f(ou) = —1},
A(f)={ecAlfle)=-1}, fluh)=[AT@w", -4~ /),
Ap(f)={ec Al f(e —1}, f™) =A™, /)l = A7 (u™, f)].

We make use of the following observations in this paper.

\_/\_/

Observation 1.1. If f is an SATDF on a digraph D of size m, then

(8) w(f) = A+ ()] = [A_(F)],
(b) m = A4 (F)] +]A-(f).
(¢) 7(D) =m (mod 2).

Observation 1.2. Let e be an arc with degree at most 2 in D. If f is an SATDF
on D, then f assigns 1 to each arc of N(e).
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For every arc e € A, define
Apaa = {e € A|dp(e) isodd} and Aepen ={e € A|dp(e) is even}.

Denote m, = |Apgq| and me = |Acyen-

Observation 1.3. Let f be a signed arc total dominating function on D and e € A.
If € € Aoaa, then 3 ey f(€) 2 1 and 32, c (e f(€) 2 2, when e € Acyen.

A directed graph is called connected if replacing all of its arcs with undirected
edges produces a connected (undirected) graph.

Observation 1.4. If D1, D5, ..., D, be the components of D, then
Yo (D) = AL (Dy). (1.1)
i=1

Theorem 1.5. Let D be a digraph of size m. Then +,,(D)

= m if and only if for each
arc e € A(D) there is an arc ¢’ € N(e) such that dp(e’) < 2.

Proof. One side is clear by Observation 1.2. Let v%,(D) = m. Assume, to the contrary,
there exists an arc e = uwv € A(D) such that for every ¢’ € N(e), dp(e’) > 3. It is
easy to verify that the function f : A(D) — {—1,1} that assigns —1 to uv and +1
to the remaining arcs, is an SATDF of D of weight m — 2, and so v.,(D) < m — 2,
a contradiction. This completes the proof. O

Remark 1.6. We remark that the signed edge total domination and signed arc total
domination are not comparable. If D, is an orientation of Kj 4 such that dJ151 (w) =
dp, (w), where w is the central vertex of K4, then 7, (D1) = 4 > v5,(K14) = 2.
If Dy is an orientation of Ko such that ¢’ > 1, then +,(D2) = ., (Ka2) = 4.
Let U = {u1,u2,u3} and V = {v1,v2,v3} be the partite sets of K33 and let D3 be
an orientation of K3 3 such that

A(D3) = {u1v;, vjus, ugv;, ugvy | 1 <4 <3, 2 <5 <3}

Define f on A(D3) by f(uive) = f(ugve) = —1 and f(x) = 1 otherwise. Obviously,
f is an SATDF on D3 with weight 5. Thus +.,(Ds) < 7., (K33) = 7.

2. BOUNDS ON THE SIGNED ARC TOTAL DOMINATION NUMBER

In this section, we present some lower bounds for the signed arc total domination
number of a digraph D.

Theorem 2.1. For any digraph D of size m > 2 and §’ > 1,
v (D) > max{d’ +3 —m, A" +1—m}.

Furthermore, this bound is sharp.
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Proof. Let f be an SATDF on D and let uv € A. Then f assigns 1 to at least [‘S'Qil]
arcs in N(uv). Let /v’ € N(uv) such that f(u'v") = 1. Also f assigns 1 to at least

(‘S/T‘HW arcs in N (u'v’). Therefore

O +1
A-(f)l €m="F= -1,
which implies that
0 +1 O +1
V(D) = [A4(H = [A-(P| 2 5= 41— (m = 5= 1) = +3-m,

as desired. Now let uv € A(D) be an arc with maximum arc degree in D, then

MDD 4 () 2 140 0 N = 2

and this leads to v.,(D) > A’ + 1 — m. If D is an orientation of K3 o with central
vertex v such that df,(v) = 2, then obviously v,,(D) =2 =§' + 3 — m. O

Theorem 2.2. Let D be a digraph with order n and size m > 2 with 8’ > 1. Then

m— (AT =) n—-0") (A7 =1)— (A~ =07 )(n—6")(AT =1)
At + A -2 '

Vet (D) =
Proof. Let f be a 7.,(D)-function. We have

V(D) = [AL (P =|A_(N) =D 1AT @, A= D 1AW £l =D flu

ueV ueV ueV

Similarly, we have

Yot (D) = 1A (N =A-(N)] = DA W, HI=D 1A @™ )l = Y flu). (22

ueV ueV ueV

For an arbitrary uv € A, f(N(uwv)) = f(u™) + f(v™) — 2f(uv) > 1. Therefore,

m+29,(D) < Y (ful)+ f(v7) = 2f () +2 Y f(uv)

uvEA uvEA
= > (Fh)+ 1) =Y fhdhw) + ) fw”
uvEA ueV veV

Let

Bf={ueV|fut) =1}, Bi={ueV|f") =0}, B ={ueV|fu)<-1},
—{ueV | fw) =1}, By={ueV|fu)=0}, B-={ueV|fu")<-1}
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Then by (2.1)—(2.3), we have

m+27,(D) < Y fuh)dh(u) + Y f(o7)dp(v)

uevV veV

= > fwhdhw) + Y fuh)dh(w)

uEBI uEBf

+ ) f@)dp)+ Y feT)dp(v)

UGB; veEB”
<AY N fh)+0t Y fut)

uEBi uEBt

HAT Y f)+6T > f)

UGB; veEB”

= AT fh)+ (0t —Aat) Y fut)

ueV uEBt

AT )+ AT Y F)

veV veEB”

= ATYL,(D) + (67 = AT) Y f(uh)

uEBf

FAYD) 4 (67 - A7) Y f).

vEB”

Hence

(AT + A7 =2)7,(D) = m+ (AT =6) Y fuh)+ (A" =67) Y fv).
ueBT vEB~
(2.3)

For each u € BT and v € N*(u), we have v € B} U By . Since
FWh)+ f(v7) = 2f(w) > 1,

it follows that
5" < IN*(u)| < |Bf| +|By | =n— |BZ.

Therefore
|BZ| <n—d". (2.4)

Similarly, for each v € B~ and u € N~ (v), we have u € Bi U Bar, which implies

|IBf| <n-§". (2.5)
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On the other hand, for each u € BY, there must be a vertex v € N*(u) such that
f(uv) = —1. Using this and the fact that f(ut) + f(v™) — 2f(uww) > 1, we get
fut)+ f(v™) > —1. Since f(v™) < A~ — 2, we have

fwh)y >1-A". (2.6)
Similarly, for each v € B~ , we have
flw™)>1- A", (2.7)
Applying (2.3)—(2.7), we obtain
(AT + A7 =2)7,(D) 2m — (AT = ") (n—67) (A — 1)
— (A7 =6 )(m =) (AT —1)
as desired. O]

A digraph D is regular if AT = §* = A~ = §~. As an application of Proposition 2.2,
we obtain a lower bound on the signed arc total domination number for r-regular
digraphs.

Corollary 2.3. If D is an r-regular digraph of size m with v > 2, then

Yst(P) 2 {27*”1 2—"

Theorem 2.4. For any digraph D of order n and size m,

2
/ m m,
D) > - —m.
Yl )_Q[n(A‘*‘—i—A——Z) 2(A++A——2)W

Proof. Let f be a ~.,(D)-function and let e = uv be an arc in D. If e is an arc of odd
degree, then

(dp(u) +dp(v) = 1)

l\')\»—l

IN(e) N AL (f)] =

and if e is an arc of even degree, then

IN() N AL > 3 (dh(w) + dp(0)).
Thus
SIN@ AN > 5 3 (@) +dp () — 5me
ecA uv€A
1 . L) 1
= 2 [ @ + Y p)?) - 5m,
uev veV
2 2 9
BT I
n ueV veV "
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On the other hand,

AT+ AT =2)JAL (N = Y IN(e)

e€AL(f)

= Y (IN()NAL(H+IN()nA_(f))
e€Ay(f)

= > INE@NALNDI+ D IN(e)NA(f)]
e€AL(f) e€AL(f)

= Y INE@NALDI+ D IN(e)NAL(f)]
e€ AL (f) e€A_(f)

:Z\N YNAL(f)| > %—%

ecA

Since 7., (D) = 2|AT(f)| — m, we get
2
' (D) > 2[ m - o
V(D) 2 n(AT+A-—-2) 2(At4+ A —
Theorem 2.5. Let D be a digraph of size m. Then

(240 — A)ym+ 2m,
’ygt(D) Z 6/ + A/ .

2)—‘—m. O

Proof. Let f be a «;(D)-function and ) . 4, dp(e) = L. By Observation 1.3, we have

Do fE= 30 > fE+ > > )

e€EAe’eN(e) e€Acven e’ EN(e) e€Aoaaq e’ €N (e) (2.8)
> 2‘Aeven| + |Aodd| =M+ m.

On the other hand,

Yo =Y dple)fe)= Y dp(e)f(e)+ Y dple)f(e)

ecAe’eN(e) ecA ecAy(f) ecA_(f)
e€AL(f) ecA_ e€AL(f) ecA
<24, (f)] - L. (29)

Similarly, we have

D, D, =) do@f()= >, do(@f(e)+ >, dp(e)f

ecAe’eN(e) ecA e€AL(f) ecA_(f)
= > dple)— Y dple)=> dple)-2 > dp(e)
e€AL(f) e€A_(f) ecA e€A_(f)
<Y dple) =2/A_ ()] = L —2(m — A (f)])5" (2.10)

ecA



786 Leila Asgharsharghi, Abdollah Khodkar, and S.M. Sheikholeslami

y (2.8)—(2.10), we deduce the following inequalities:
m+me+ L <2A'|AL(f)] and m + 2md’ + me — L < 28'| A (f)|- (2.11)
Summing the inequalities in (2.11), we have

(I1+0")ym + me

()] =

and hence
(24 — A)ym +2m,

5+ A

V(D) = 2| A4 (f)] —=m =
O

Theorem 2.6. Let D be a digraph of size m with the arc degree sequence
di >dy>...>d,. Then

m+me+L—2Lt+2tdg+1"‘ B

2d,

(D) 2 2|
t+1

where t = max{[ 1”522, L+mew, [mELI/mch, L= Z: (diand L =73 . ,dp(e).
Proof. Let f be a v.,(D)-function on D. From (2.11), we have

m+ L+ m, m(1+42") — L+ me

‘A+(f)| > Tv |A+(f)| 2 25!
So (1+28)— L L
m(l + " — + me m+ L+ me
|A+(f)|>t:max{[ 257 —"[ 2A/ —‘}

It follows from inequality (2.8) and the inequality chain (2.9) that

m+me <2 Z dp(e ZdD

ecAL(f) ecA

<2(Zd’ (AL (f)] —t) ;+1> —L
2 (Le + (JAL(f)| — t)d}y ) — L.

Therefore

m+me+ L —2L; + 2td} |
A+ ()] =
| S 1

and hence

m+me+L—2Lt+2td§+1-‘ B

2d,

V(D) = 2144 ()] = m = 2| »
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Theorem 2.7. For every simple connected digraph D with 2<§' <A’ <6, v.,(D) > 0.
2

Proof. Let f be a ~.,(D)-function. Since 2 < ¢" < A’ < 6, we have |[Np(e)NAL(f)] >
and |[Np(e) N A_(f)| < 2. Now it is clear that

204-(NI< Y INp(@NALNI= D INp(e)NA-(f)] < 2[AL (/).

ecA_(f) e€AL(f)

Thus [A_(f)| < [A4(f)| and hence, 7, (D) = [A4(f)] = [A- ()| = 0. O

3. SIGNED ARC TOTAL DOMINATION IN ORIENTED GRAPHS

Let G be the complete bipartite graph Ks 3 with bipartite sets V' = {v1,v2} and
U = {u1,u2,us}. Let Dy be an orientation of G such that all arcs go from V into U
and let Dy be an orientation of G such that A(Ds) = {(v1,u;), (u;,v2) | 5 =1,2,3}.
It is easy to see that v.,(D1) = 2 and 7.,(D2) = 6. Therefore, two distinct orientations
of a graph can have different signed total arc domination numbers. Motivated by this
observation, we define lower orientable signed total arc domination number dom,(G)
and upper orientable signed total arc domination number Dom’,(G) of a graph G
as follows:

dom’,(G) = min{v.,(D) | D is an orientation of G with &' > 1},

and
Dom’,(G) = max{v.,(D) | D is an orientation of G with ¢’ > 1}.

An immediate consequence of Proposition 1.5 now follows.
Corollary 3.1. Forn > 3, dom),(P,) =n — 1, dom’,(C,) = n.

3 m is odd,

Proposition 3.2. If G = K1, is a star, then dom’, (K1 ,,,) = {2 .
m is even.

Proof. Consider the graph Kj ,, with bipartite sets {v1} and {u1,us,...,un}. Let D
be an orientation of K ,, and let f be a v/, (D)-function. If df,(v1) = 0 or d(v1) = 0,
then |A_(f)| = (m —2)/2 if m is even and |A_(f)| = (m — 3)/2 if m is odd. Hence,
7., (D) = 2 if m is even and v.,(D) = 3 if m is odd. Suppose that df (vi) and
dp(v1) > 1. If either df (v1) = 1 or dp(v1) = 1, then there is an arc e = vyu; with
dp(e) = 0, a contradiction. So d},(v;) and dp(v1) > 2. Let, without loss of generality,
that w3 € NT(vy) and ug € N~ (v1). If m is odd, then either f(N(viu1)) > 2
or f(N(ugvi)) > 2. Thus ~v,,(D) > 3. If m is even, since f(N(viu1)) > 1 and
f(N(ugvy)) > 1, it follows that ~.,(D) > 2. This completes the proof. O

4 if m is even,

L 3.3. Form > 2, v(Kam) =
emma orm > 2, vy (Ka,m) {2 if m is odd.
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Proof. Let X = {uj,us} and Y = {1, v2,..., v} be the partite sets of Ky ,,, and let
f be a v, (Ko, )-function. We consider two cases.

Case 1. m is odd.

Since
F(N(uion)) = flugvr) + Y flur) > 1
=2
and .
F(N(ugvr)) = flurvn) + Y flugvs) > 1,
i=2
we have

m m

w(f) =D fluavy) + Y flugvi) = F(N(ugvr)) + f(N(ugvy)) > 2.

i=1 i=1

Deﬁne g: E(Kam) — {—1,1} by g(urv1) = g(ugv1) = 1 and g(uiv;) = g(uav;) =
(=1)* for 2 < i < m. Obviously, g is an SETDF of Ky, of weight 2 and so
7. (Kam) < 2. Therefore v, (Ka m) = 2.

Case 2. m is even.

Define g : E(Ks,) — {—1,1} by g(wv1) = g(uve) =1 for i = 1,2 and g(uiv;) =
g(ugv;) = (—1)" for 3 < i < m. Obviously g is an SETDF of Kj ,, of weight 4 and hence
i (Ka.m) < 4. Now we show that +.,(Ka,,) = 4. Since m is even, f(N(ujv1)) > 2 and
f(N(ugvy1)) > 2. Hence,

w(f) = f(N(uiv1)) + f(N(ugv1)) = 4.
Therefore ., (Ka,m) = 4. O

2 if m is odd,

Proposition 3.4. For m > 2, dom/,(Ks,m,) = : )
4 if m is even.

Proof. Let U = {u1,us} and V = {v1,va,...,v,} be the partite sets of K ,,, D be
an orientation on Ko, and f be a /., (D)-function. If df (v;) = 2 (or dp(v;) = 2) for
each 1 < ¢ < m, then we are done by Lemma 3.3. Without loss of generality, suppose
that dj;(u1) > dp(u1). We distinguish two cases.

Case 1. df,(v;) = dp(v;) = 1, for some 4, say i = 1.

Without loss of generality, suppose that ujvy,vius € A(D). Since f(N(ujv1)) > 1,
there is at least one arc ¢’ € N(ujv1) such that f(e’) = 1. Similarly, there is an arc
e’ € N(vjuz) such that f(e”) = 1. Since

IN(e") N ({ugvi | ugvi € A(D)})| < 1

and
[N (") N ({vius [ viur € A(D)})| <1,
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we have

V(D)= Y flugvy) + f(¢) + FIN()) + f(e") + F(N("))

uzvieA(D)

+ > flv) =2
’L)iuleA(D)

>4-2=2

Hence, if m is odd, then the statement is true. Assume that m is even. If either |N(e’)]
and |N(e")| are even or

IN(e) N ({uzvi | ugv € AD)})| = IN(e”) N ({vius [ viwy € A(D)})| =0,

then by an argument similar to that described above we get v.,(D) > 4. We consider
two subcases.

Subcase 1.1. [N (€')] is odd and |N(e") N ({ugv; | ugv; € A(D)})| =1 (the case [N (e”)]
is odd and [N (e”) N ({v;uy | v;u; € A(D)})| =1 is similar).

Then |N(ujvq)| is even. Let

{z} = N(¢/) N ({uzv; | ugv; € A(D)}).

If f(z) = =1, then }_, , cap) f(uavi) = 3 and 32, ca(p) f(uzvi) =2 —1 and if
f(z) =1, then ZulvieA(D) f(uv;) > 1 and ZuzvieA(D) f(ugv;) > 1. Consequently,
ZumeA(D)f(ulvi) + ZuzvieA(D)f(UQU’i) > 2. Moreover, since f(N(e"”)) > 1, we
have >°, . cap) f(viuz) = 1. If there is an arc y = v;u; (note that since m and
|N(uqvy)| are even, there is at least one arc v;u; in A(D)) such that f(y) = 1, then
> viurea(p) f (viur) = 1. Therefore

V(D)= > fluo)+ D flugw)
)

ulviGA(D ugviGA(D)

+ Y flow)+ Y f(viu)
viu1 €EA(D) viug €A(D)

> 4.

Suppose that f(vju1) = —1 for each v;u; € A(D). Then dj(u1) = 1. Without loss
of generality, suppose that {vy,} = Np(u1). Since 3 ¢y, up) f(€) = 1, we have
f(vmuz) =1 and since f(N(vmuz)) =1, we have 3 . 4p) f(viuz) = 3. Therefore,

VD)= Y flmv)+ Y flue) + flomm) + Y fviug) >4,
ul’UiEA(D) ’uz’UiEA(D) ’Ui’u,QGA(D)

Subcase 1.2. |N(€')| is odd and |N(e”) N ({viur | viur € A(D)})| =1 (the case |[N(e”)]
is odd and |N(e') N ({ugv; | ugv; € A(D)})| =1 is similar).
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Let {z} = N(e”)N({viur [ viux € A(D)}). If f(z) = =1, then 3°  ca(py f(viuz) = 3
and >, cap) f(viur) = —1 and if f(z) = 1, then ZviuzeA(D) floug) > 1
and 32,y cap) f(viur) = 1. Hence, 37, c aqpy f(vitn) + 22,0, a(p) f(viuz) 2 2.
If df(u2) = 0, since f(N(e')) > 1, then 2 uvea(p) f(wivi) > 2 and if there is an arc
y = ugv; such that f(y) =1, then >° . 4 py f(u20;) > 1. Therefore

D)= > f(u1v1)+ > f(u2v1)+ Yoo flu)+ D flvius)

uiv; EA(D usv; EA(D v,ur €EA(D) vius €EA(D)
> 4.
Suppose that f(ugv;) = —1 for each usv; € A(D). Then dj (uz) = 1. 1th—
out loss of generality, suppose that {v,,} = Np(u2). Then f(ujv,,) =

ZulvieA(D) f(uqv;) > 3. Therefore,

VD)= > fluv) + flugom) + Y flow)+ Y. flviug)) >4

ul’UiEA(D) ’uiuleA(D) ’UiuzeA(D)

Case 2. df,(v;) = 2 and d,(v;) = 2, for some i, j.
Without loss of generality, suppose that d},(v;) =2 for 1 <i <t and dp(v;) = 2 for
t+1 < j <m. Then by Lemma 3.3,

Yot (D) = v (Kat) + 7ot (Kom—¢) > 242 =4.

This completes the proof. O
Theorem 3.5. For any integer t, there is a graph G with dom’,(G) = —t.

Proof. For a given positive integer r > 4, let T be a graph that obtained from a star
K , by subdividing all of its edges once and let G' be the graph obtained from ¢+1 copies
of T' with central vertices v1,va,...,v:41 by adding the edges vi1va, vovs, ..., V4141
(see Figure 1).

Fig. 1. A digraph with v, (D) = —4

Let {v;,v; j,u;; | 1 < i <t} be the vertex set of jth copy of T, where N(v; ;) =
{v;,u; ;} and u; ; are leaves for each i. Let D be an arbitrary orientation of G and
let f be a 7.,(D)-function. Clearly, either df(v; ;) = 2 or d(v; ;) = 2 for each i, j
because ¢’ > 1. In both cases, f assigns +1 to each non-pendant arc of each copy of T.
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Since the least possible weight for f will be achieved if f(e) = —1 for each other arcs,
we have w(f) > (t+1)r — (t +1)r —t = —t. In order to show that dom’,(G) < —t, let
D be an orientation of G such that

A(D) = {(vj,vj41), (vj,vij), (Uij,vi5) s 1<i<r 1 <5<t}

as illustrated in Figure 1 for ¢t = 4. Define f : A(D) — {—1,1} by f(vjv; ;) = +1 and
f(vj,vj11) = f(uijvi ;) = —1for 1 <i <rand 1< j <t Obviously, f is an SATDF

on D of weight —t. Therefore, dom’,(G) = —t. O
Theorem 3.6. If T is a tree of order n > 3, then
dom’,(T) > ! g n.

Furthermore, this bound is sharp.

Proof. The proof is by induction on n. The statement holds for all trees of order
n = 3,4,5. Assume T is a tree of order n > 6 and that the statement holds for all
trees with smaller orders. Let D be an arbitrary orientation of 7" with ¢’ > 1 and let
f be a v%,(D)-function. We consider two cases.

Case 1. There is a non-pendant arc, say e = uv € A(D), for which f(e) = —1.

Let D1 and D5 be the components of D — e with w € Dy and v € Ds. Obviously, the
order of Dy and Dy are greater than 3 and +.,(D) = f(A(D1)) — 1+ f(A(D>)). For
i = 1,2, the function f, restricted to D;, is an SATDF of D;, and so v.,(D;) < f(A(D;)).
By the inductive hypothesis,

7—|A(D;
(0 > =PI
s ToADY)|  T—]ADy)| 11 7
'(D) > —1 — ! — DI _ 2270 "
Case 2. The only arcs e for which f(e) = —1 are pendant arcs.

Then f(vT) > 0 for each v € V(D) with d},(v) > 2 and f(v~) > 0 for each v € V(D)
with d(v) > 2. Let

PY ={veV(D)|d5(v)>2and f(v") =0} and
Py ={veV(D)|d,y(v) >2and f(v") =0}.

First, let Pji = P, = (. Then f is an SEDF of D. Hence, v.(D) > |V/(D)| — |A(D)|
(see [2]). Since n > 6 and |V (D)| = |A(D)| + 1, it follows that

T—n

Yo (D) = f(A(D)) = (D) = 1 >

Without loss of generality, suppose that Pj; # ). Let P, = {u1,ua, ..., ux}. Obviously,
there is no +1 pendant arc out from u; for each i. Let

M (ui) = {u € Npj(ui) | dp(u) > 2}.
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Let first |Mf(u;)| > 2 for some i. Without loss of generality we may assume
|Mg(u1)| > 2 and vy,v2 € Mg(ul). Let D; and D5 be the connected components
of D — ujv; for which v; € V(D;). Let D} be obtained from D; by adding a new
pendant arc wivy and let D} be obtained from Dy by deleting one of the —1 pendant
arcs out from uy. Now define g : A(D]) — {—1,+1} by g(wiv1) = +1 and g(e) = f(e)
if e € A(D1). Obviously, g is an SATDF of D] and f|p, is an SATDF of Dj. By the
inductive hypothesis,
7— |A(D))]

Yot (D) > 3 .

Thus

V(D) = F(A(D)) = g(A(DY)) + flpy (A(D3)) — 1
ToADY T A  Ton

> -1
- * 3 3 3

Now let M} (u;) = {v;} for each 1 <1 < k. Since f(N(u;v;)) > 1, we have f(v; ) >3
for each 7. Let D’ be obtained from D by deleting all pendant vertices and the vertices
of P;}. We distinguish three subcases.

Subcase 2.1. dp,(v1) > 1, e = vv; € A(D') and f(v") =11in D.

By the construction of D’ we have df;(v) > 3. Since f(v*) =1 and all arcs in D’ are
+1 arcs, there exists a pendant arc €’ out from v in D, say €/ = vz. Let D; and D»
be the connected components of D — e containing v; and v, respectively. Let D} be
obtained from D; by adding a new pendant arc v'v; at vy and D) = Dy — z. It is easy
to see that the order of D] and D} are greater than 3. Define g : A(D}) — {-1,+1}
by g(v'v1) =1 and g(e) = f(e) if e € A(D1). Obviously, g and f|p, are SATDFs of
Dj and D), respectively. By the inductive hypothesis,

] - [/ Di
Thus

74(D) = F(A(D)) = g(A(D}) + f1p,(A(D)) — 1
oy TVl T VDY T—n
- 3 3 3

Subcase 2.2. dp,(v1) > 1, e =vvy € A(D’) and f(v') >2in D.

Let D; and Dy be the connected components of D — e. Let Dj and D) be ob-
tained from D; and Dy by adding new pendant arcs v'v; and vv”, respectively.
Define ¢; : A(D}) — {—1,+1} by g1(v'v1) = 1 and g(e) = f(e) if e € A(D;), and
g2 : A(D}) — {—1,41} by g(vv”) =1 and g(e) = f(e) if e € A(D2). Obviously, g; is
an SATDF of D] for i = 1, 2. In addition, we have |V(D})| + |V(D4)| = n + 2. By the
inductive hypothesis,

T—n

Yar(D) = F(A(T)) = g1(A(D1)) + g2(A(D5)) = 1> —
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Subcase 2.3. dp,(v1) = 0.

This implies that u;v; € A(D) for each 1 < ¢
at vy, say € = xvy, €’ = yvy, such that f(e’)
inductive hypothesis on D — {z,y} we have

k. If there exist two pendant arcs
—1 and f(e”’) = 1, then using the

VAN

—(n—2 —n
’Y;t(D)Z7 (3 )>73 .
Let r be the number of pendant in-neighbors of v1. By assumption k —r = f(v; ) > 3.
Furthermore, since f (uf) = 0, there exists a pendant arc u;w; for each i. Therefore,
n > 2k+r+1 and hence, r < 2T If D, is the subdigraph induced by (UF_; N7, (u;))U
N (v1), then w(f|p,) = —r. Now let Dy be the digraph obtained from D by deleting
all arcs of D; and all the isolated vertices. If |V (D3)| = 0, then D = D; and we are
done. Let |V (D2)| # 0. Since D is an oriented tree, it is easy to verify that Dy has ¢
components, where t = |V(D;1) N V(D3)|. Since the order of each component of Dy is
greater than 2, by the induction hypothesis and Observation 1.4, we have

7t — V(D
> TV
Therefore
7 |V(Dy)| . Tt—|V(D
YD) 2 ALu(D2) (D) > TP T D)
_ T+ —(+t)  T—n
3 3

In order to show the sharpness of the lower bound, let D be a digraph with vertex
set
V(D) = {w,u;,v;,wj |1 <i <k, k>3and1<j<k-—3},

and arc set
A(D) = {ww;, wu;,viu; | 1 <i<kand1<j<k-3}

(see Figure 2).

Fig. 2. Digraph D with k=7
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Define f : A(D) — {—1,1} by f(ww;) = f(v;u;) = —1 and f(wu;) = 1 for each
1<i<kand1l<j<k-—3. Clearly, f is an SATDF of D with weight FT” This
completes the proof. O
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