PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure distribution in a porous squeeze film bearing lubricated with a Herschel-Bulkley fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of a wall porosity on the pressure distribution in a curvilinear squeeze film bearing lubricated with a lubricant being a viscoplastic fluid of a Herschel-Bulkley type is considered. After general considerations on the flow of the viscoplastic fluid (lubricant) in a bearing clearance and in a porous layer the modified Reynolds equation for the curvilinear squeeze film bearing with a Herschel-Bulkley lubricant is given. The solution of this equation is obtained by a method of successive approximation. As a result one obtains a formula expressing the pressure distribution. The example of squeeze films in a step bearing (modeled by two parallel disks) is discussed in detail.
Rocznik
Strony
951--965
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 2, P65-516 Zielona Góra, Poland
autor
  • University of Zielona Góra, Faculty of Mechanical Engineering, ul. Szafrana 2, P65-516 Zielona Góra, Poland
Bibliografia
  • [1] Adams M.J. and Edmondson B. (1987): Forces between particles in continuous and discrete liquid media. – In: B.J.Briscoe and M.J.Adams (Eds) IOP Publishing, New York: Tribology in particulate technology, pp.154-172.
  • [2] Covey G.H. and Stanmore B.R. (1981): Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress. – J. Non-Newtonian Fluid Mech., vol.8, pp.249-260.
  • [3] Dai G. and Bird R.B. (1981): Radial flow of Bingham fluid between two fixed circular disks. – J. Non-Newtonian Fluid Mech., vol.8, pp.349-355.
  • [4] Lipscomb C.C. and Denn M.M. (1984): Flow of Bingham fluids in complex geometries. – J. Non-Newtonian Fluid Mech., vol.14, pp.337-349.
  • [5] Rodin G.J. (1996): Squeeze film between two spheres in a power-law fluid. – J. Non-Newtonian Fluid Mech., vol.63, pp.141-152.
  • [6] Smyrnaios D.N. and Tsamopoulos J.A. (2001): Squeeze flow of Bingham plastic. – J. Non-Newtonian Fluid Mech., vol.100, pp.165-190.
  • [7] Vishwanath K.P and Kandasamy A. (2010): Inertia effects in circular squeeze film bearing using Herschel-Bulkley lubricants. – Appl. Math. Modelling, vol.34, pp.219-227.
  • [8] Engman J., Servais C. and Burbidge A.S. (2005): Squeeze flow theory and applications to rheometry: a review. – J. Non-Newtonian Fluid Mech., vol.132, pp.1-27.
  • [9] Xu C., Yuan L., Xu Y. and Hang W. (2010): Squeeze flow of interstitial Herschel-Bulkley fluid between two rigid spheres. – Particuology, vol.8, pp.360-364.
  • [10] Walicka A. (1994): Accurate and Asymptotic Solutions of Viscous Fluids in a Clearance Bounded by Two Coaxial Surfaces of Revolution (in Polish). – Warsaw: WN-T.
  • [11] Bujurke N.M., Jagadee M. and Hiremath P.S. (1987): Analysis of normal stress effects in squeeze film porous bearing. – Wear, vol.116, pp.237-248.
  • [12] Etsion I. and Michael O. (1994): Enhancing sealing and dynamic performance with partially porous mechanical face seals. – Trib. Transactions, vol.37, pp.701-710.
  • [13] Morgan V.T. and Cameron A. (1957): Mechanism of lubrication in porous metal bearings. – In: Proc. Conf. on Lubrication and Wear, Inst. Mech. Eng. London, pp.151-157.
  • [14] Prakash J. and Vij S.K. (1973): Load capacity and time-height relations for squeeze films between porous plates. – Wear, vol.24, pp.309-322.
  • [15] Shukla J.B. and Isa M. (1978): Externally pressurised porous thrust bearing with power-law lubricant. – Wear, vol.33, pp.85-92.
  • [16] Walicki E, Walicka A. and Makhaniok A. (2000): Pressure distribution in a curvilinear thrust bearing with one porous wall lubricated by a Bingham fluid. – In: Proc. First 2000 AIMETA Int. Trib. Conf., L’Aquila, Italy 2000, pp.528-539.
  • [17] Walicka A. (2011): Pressure distribution in a porous curvilinear squeeze film bearing lubricated by a Bingham fluid. – Int. J. Appl. Mech. Enging, vol.16, pp.1215-1224.
  • [18] Falicki J. (2007): The Influence of Viscoplastic Lubricants on the Pressure Distributions in Thrust Slide Bearings (in Polish). – PhD Thesis, University of Zielona Gora, p.221.
  • [19] Walicki E. (2005): Rheodynamics of the Lubrication of Slide Bearings (in Polish). – Zielona Góra: University Press, p.556.
  • [20] Herschel W.M. (1922): Viscosity and friction. – SAE Journal, vol.10, pp.31-38.
  • [21] Herschel W.M. and Bulkley R. (1926): Konsistenzmessungen von Gummi-Benzollosungen. – Kolloid Z., vol.39, pp.291-297.
  • [22] Walicki E. and Walicka A. (1997): Throughflow of viscoplastic fluids between fixed surface of revolution. – In: Proc. 5th Nat. Conf. on Multiphase Flows 1997, Gdańsk, Poland, vol.2, pp.133-136.
  • [23] Walicka A. (2002): Rheodynamics of Non-Newtonian Fluids Flows in Straight and Curved Channels (in Polish). – Zielona Góra: University Press, p.307.
  • [24] Walicka A. (2002): Rotational Flows of the Rheologically Complex Media in Thin Annular Channels (in Russian). – Zielona Góra: University Press, p.385.
  • [25] Walicka A., Jurczak P. and Walicki E. (2011): Generalized second grade fluids – Basic equations and basic flows. – In EKMA Press, Warsaw: Rheology - Theory and Application, vol.2, pp.303-335.
  • [26] Walicka A. and Walicki E. (2011): Non-Newtonian fluids flows in porous media. – In EKMA Press, Warsaw: Rheology - Theory and Application, vol.2, pp.337-367.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f37b0e6-0876-4e56-ac33-0fbf2fb88bb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.