PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Socioeconomic driving forces of land use/cover changes in the semi-arid Harran plain and their probable implications on arising groundwater level, the GAP area of southeastern Türkiye

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, industrialization, urbanization and population growth are recognized as the most pervasive socioeconomic drivers contributing to land use/cover change on a global scale. However, the transition to irrigated agriculture, which has been initiated for the last 40 years in the Harran Plain, which is a semi-arid region where dry farming has been practiced for years, has brought along some socioeconomic driving forces. In this context, this study adopted two categorical approaches. The first is excessive-irrigated areas, danger of salinization, lack of drainage systems, unplanned urbanization, deterioration in groundwater quality, increasing population and migration. The second is the gradual rise of groundwater level triggered by excessive and unconscious irrigation. The implications caused by this rise are discussed in this study. Besides, in this study, the impact of these two categories was determined by the analysis of land use/cover changes. Our study utilized remote sensing and geographical information system to define and predict land use and land cover changes in the GAP area of southeastern in Türkiye. We found that in a 40-year period (from 1990 to 2020), a semi-arid Harran Plain has lost 12.33% of its steppe areas and 29.93% of dry agricultural areas. In addition, 33.44% from irrigated agricultural areas, 3.34% from forest areas and 5.48% from residential areas have gained. The results indicated that despite the decrease in dry agriculture and steppe, the increase in irrigated agricultural production, build-up area and woodland is the major driving forces contributing to land use-change in the Harran Plain. The study will contribute to the development of sustainable urban land use planning decisions and to predict possible future changes in the growth patterns in the plain.
Czasopismo
Rocznik
Strony
2795--2810
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • Graduate School of Natural and Applied Sciences, Remote Sensing and Geographic Information Systems, 100/2000 CoHE PhD Scholarship, Harran University, 63050, Şanlıurfa, Türkiye
  • Environmental Engineering Department, Harran University, 63050, Şanlıurfa, Türkiye
  • Medical Services and Techniques Department, Bitlis Eren University, Bitlis, Türkiye
  • Environmental Engineering Department, Harran University, 63050, Şanlıurfa, Türkiye
  • Graduate School of Natural and Applied Sciences, Remote Sensing and Geographic Information Systems, 100/2000 CoHE PhD Scholarship, Harran University, 63050, Şanlıurfa, Türkiye
Bibliografia
  • 1. Alkharabsheh MM, Alexandridis TK, Bilas G, Misopolinos N, Silleos N (2013) Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS. Procedia Environ Sci 19:912–921
  • 2. Alqurashi A, Kumar L (2013) Investigating the use of remote sensing and GIS techniques to detect land use and land cover change: A review. Adv Remote Sens. https://doi.org/10.4236/ars.2013.22022
  • 3. Anderson R, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data. USGS Professional Paper 964, Washington DC
  • 4. Arca D, Citiroglu HK, Kutoglu HS et al (2017) Assessment of geo-environmental properties depressing urban development with GIS: a case study of Kozlu settlement, Turkey. Nat Hazards 87:307–322. https://doi.org/10.1007/s11069-017-2765-y
  • 5. Arca D, Hacısalihoğlu M, Kutoğlu ŞH (2020) Producing forest fire susceptibility map via multi-criteria decision analysis and frequency ratio methods. Nat Hazards 104:73–89. https://doi.org/10.1007/s11069-020-04158-7
  • 6. Atas M, Yesilnacar MI, Demir Yetis A (2021) Novel machine learning techniques based hybrid models (LR-KNN-ANN and SVM) in prediction of dental fluorosis in groundwater. Environ Geochem Health. https://doi.org/10.1007/s10653-021-01148-x
  • 7. Aytaç A (2020) Karstik Tehlike kavramı ve Harran Ovası'nın İncelenmesi, K. Kartal (ed.) Sosyal ve Beşerî Bilimler Alanına Kuramsal Yaklaşımlar, (pp 25–74), İksad Publishing House, Ankara (In Turkish)
  • 8. Benek S, Sahap A (2016) Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Kullanarak Şehirsel Gelişimin Arazi Kullanımına Etkisinin İncelenmesi: Şanlıurfa Şehri Örneği. Turk Stud 11(8):79–102. https://doi.org/10.7827/TurkishStudies.9444
  • 9. Bilgili AV (2013) Spatial assessment of soil salinity in the Harran plain using multiple kriging techniques. Environ Monit Assses 185:777–795
  • 10. Bilgili AV, Cullu MA, Van Es H, Aydemir A, Aydemir S (2011) The use of hyperspectral visible and near infrared reflectance spectroscopy for the characterization of saltaffected soils in the Harran plain, Turkey. Arid Land Res Manag 25:19–37
  • 11. Bilgili AV, Yeşilnacar Mİ, Akihiko K, Nagano T, Aydemir A, Hızlı HS, Bilgili A (2018) Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey. Environ Monit Asses 190(11):660. https://doi.org/10.1007/s10661-018-7019-2
  • 12. Cullu MA, Aydemir S, Qadir M, Almaca A, Öztürkmen AR, Bilgiç A, Ağca N (2010a) Implication of groundwater fluctuation on the seasonal salt dynamic in the Harran plain, south-eastern Turkey. Irrig and Drain 59:465–476
  • 13. Cullu MA, Aydemir S, Bilgili AV, Almaca A, Özturkmen AR, Aydemir A et al. (2010b) Mapping salinity of the Harran plain’s soils and estimating the effect of salinity on crop yield GAP Project Final report (In Turkish)
  • 14. Demir Yetis A, Akyuz F (2021) Water quality evaluation by using multivariate statistical techniques and pressure-impact analysis in wetlands: Ahlat Marshes. Turkey Environ Develop and Sustain 23(1):969–988
  • 15. Demir Yetis A, Selek Z, Seckin G, Davutluoglu OI (2014) Water quality of Mediterranean coastal plains: conservation implications from the Akyatan Lagoon, Turkey. Environ Monit Assess 186:7631–7642
  • 16. Demir Yetis A, Yeşilnacar Mİ, Selek Z (2018) Ceylanpınar Ovası’nda yeraltı suyu tuzluluğunun coğrafi bilgi sistemi destekli incelenmesi. İklim Değişikliği Ve Çevre 3(1):51–59 (In Turkish)
  • 17. Demir Yetis A, Yesilnacar MI, Atas M (2021a) A machine learning approach to dental fluorosis classification. Arab J of Geosci 14:95
  • 18. Demir Yetis A, Kahraman N, Yesilnacar MI et al (2021b) Groundwater quality assessment using gis based on some pollution indicators over the past 10 years (2005–2015): a case Study from Semi-Arid Harran Plain. Turkey Water Air Soil Pollut 232:11. https://doi.org/10.1007/s11270-020-04963-7
  • 19. Derin P, Demir Yetiş A, Yeşilnacar MI, Yapıcıoğlu P (2020) GAP’ın en büyük sulama sahasında jeotermal sulardan kaynaklanan potansiyel ağır metal kirliliğinin araştırılması. Türkiye Jeoloji Bülteni 63(1):125–136 (In Turkish)
  • 20. DSI (1972) Harran Ovası Hidrojeolojik Etüt Raporu. In: DSİ Genel Müdürlüğü Matbaası, Ankara. P 49 (In Turkish)
  • 21. DSI (2003) “Harran Ovasında Tuzluluk ve Drenaj Problemi”, Özet Rapor, 10 s., DSİ XV. Bölge Müdürlüğü, Şanlıurfa (In Turkish)
  • 22. DSI (General Directorate of State Hydraulic Works) (2004) Analyses of waters of main drainage canals of the Harran plain. Sanliurfa, Turkey: 15th District Directorate of State
  • 23. DSI (General Directorate of State Hydraulic Works) (2018) Groundwater level observations in the Harran Plain: summary report. Sanliurfa, Turkey: 15th District Directorate of State Hydraulic Works
  • 24. Eskandari Damaneh H, Khosravi H, Habashi K et al (2022) The impact of land use and land cover changes on soil erosion in western Iran. Nat Hazards 110:2185–2205. https://doi.org/10.1007/s11069-021-05032-w
  • 25. Gebretekle H, Nigusse AG, Demissie B (2022) Stream flow dynamics under current and future land cover conditions in Atsela Watershed. Northern Ethiopia Acta Geophys 70:305–318. https://doi.org/10.1007/s11600-021-00691-6
  • 26. Graniel CE, Morris LB, Carrillo-Rivera JJ (1999) Effects of urbanization on groundwater resources of Merida, Yucatan, Mexico. Environ Geol 37:303–312
  • 27. Hereher ME (2017) Effects of land use/cover change on regional land surface temperatures: severe warming from drying Toshka lakes, the Western Desert of Egypt. Nat Hazards 88:1789–1803. https://doi.org/10.1007/s11069-017-2946-8
  • 28. Ilhan N, Demir Yetiş A, Yeşilnacar Mİ, Atasoy AD (2022) Predictive modelling and seasonal analysis of water quality indicators: three different basins of Şanlıurfa, Turkey. Environ Develop Sust 24:3258–3292. https://doi.org/10.1007/s10668-021-01566-y
  • 29. Jat MK, Khare D, Garg PK, Shankar V (2009) Remote sensing and GIS-based assessment of urbanisation and degradation of watershed health. Urban Water J 6(3):251–263
  • 30. Kahraman N, Karabulut BY, Atasoy AD, Yeşilnacar Mİ (2016) Harran Ovası Serbest Akiferinde Yaz ve Kış Dönemleri Nitrat Kirliliğinin Araştırılması (2014–2015). HÜ Müh Derg 02:01–08
  • 31. Kara H, Demir Yetis A, Temel H (2021) Assessment of heavy metal contamination in groundwater of Diyarbakir Oil Production Area, (Turkey) using pollution indices and chemometric analysis. Environ Earth Sci 80(20):1–15
  • 32. Karabulut Aİ, Benek S, Ernst FB (2021) Planning of Eyyübiye District Center (Şanlıurfa) Using the Geodesign Method. J Geogr 42:251–269. https://doi.org/10.26650/JGEOG2021-897149
  • 33. Kaushal SS, Duan S, Doody TR, Haq S, Smith RM, Johnson TA, Newcomb KD et al (2017) Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl Geochem 83:121–135
  • 34. Kendirli B, Cakmak B, Ucar Y (2005) Salinity in Southeastern Anatolia project (GAP) Turkey: Issues and options. Irrig Drain 54(1):115–122
  • 35. Kullo ED, Forkuo EK, Biney E, Harris E, Quaye-Ballard JA (2021) The impact of land use and land cover changes on socioeconomic factors and livelihood in the Atwima Nwabiagya district of the Ashanti region. Ghana Environ Chall 5:100226
  • 36. Lambin EF, Turner BL, Geist HJ, Agbola S, Angelsen A et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 11:261–269
  • 37. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174
  • 38. Li B, Xiong L, Zhang Q et al (2022) Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China. Nat Hazards. https://doi.org/10.1007/s11069-022-05315-w
  • 39. Liaqat S, Dashtipour K, Arshad K, Assaleh K, Ramzan N (2021) A hybrid posture detection framework: Integrating machine learning and deep neural networks. IEEE Sensors J 21(7):9515–9522
  • 40. Lidzhegu Z, Palamuleni LG (2012) Land use and land cover change as a consequence of the South African land reform programme: a remote sensing approach. J Food Agricul Environ 1010(3):1441–1447
  • 41. Mas JF (1999) Monitoring land-cover changes: a comparison of change detection technique. Int J Rem Sens 20:139–152
  • 42. McGrane SJ (2016) Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol Sci J 61:2295–2311
  • 43. Nath B, Ni-Meister W, Choudhury R (2021) Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Ground for Sust Develop 12:100500. https://doi.org/10.1016/j.gsd.2020.100500
  • 44. Neog R (2021) Analyzing dynamic behavior of land use and land surface temperature in the city of Imphal. India Acta Geophys 69:2275–2290. https://doi.org/10.1007/s11600-021-00659-6
  • 45. Orimoloye IR, Olusola AO, Belle JA et al (2022) Drought disaster monitoring and land use dynamics: identification of drought drivers using regression-based algorithms. Nat Hazards. https://doi.org/10.1007/s11069-022-05219-9
  • 46. OSIB (2017) GAP Bölgesi’nde sulamadan dönen suların kontrolü ve yeniden kullanımı için iyileştirilmesinin araştırılması proje nihai raporu. TC Orman ve Su İşleri Bakanlığı, Su Yönetimi Genel Müdürlüğü, TÜBİTAK-MAM, Gebze, Kocaeli (In Turkish)
  • 47. Ostad-Ali-As K (2022a) Investigation of meteorological variables on runoff archetypal using SWAT: basic concepts and fundamentals. Appl Water Sci 12(8):1–18. https://doi.org/10.1007/s13201-022-01701-8
  • 48. Ostad-Ali-Askari K (2022b) Developing an optimal design model of furrow irrigation based on the minimum cost and maximum irrigation efficiency. Appl Water Sci 12:144. https://doi.org/10.1007/s13201-022-01646-y
  • 49. Özcanli M, Güzel A (2015) Şanlıurfa Şehrinin Alansal Gelişiminin Çevresindeki Tarım Arazilerine Etkisi. Turk Stud 10(6):723–744 (In Turkish)
  • 50. Ozel N, Bozdag S, Baba A (2019) Effect of irrigation system on groundwater resources in Harran Plain (Southeastern Turkey). J Food Sci Engin 9:45–51
  • 51. Ozelkan E, Chen G, Ustundag BB (2016) Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. Int J Appl Earth Obs Geoinf 44:159–170
  • 52. Ozguven A, Demir Yetis A (2020) Assessment of spatiotemporal water quality variations, impact analysis and trophic status of Big Soda Lake Van. Turkey Water Air Soil Pollut 231:260
  • 53. Patra S, Sahoo S, Mishra P, Mahapatra SC (2018) Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7:70–84
  • 54. Rouse JW, Haas RS, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Proceedings, 3rd ERTS Symposium, 1, pp 48–62
  • 55. Selek Z, Yetiş AD (2017) Assessment of nitrate contamination in a transnational groundwater basin: a case study in the Ceylanpinar plain. Turkey Environ Earth Sci 76(20):698
  • 56. Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nat 338(6215):499–500
  • 57. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48(7):516–525
  • 58. Tardu T, Başkurt T, Güven A, Us E, Dinçer A, Tuna ME, Tezcan US (1987) Akçakale grabeninin yapısal-stratigrafik özellikleri ve petrol potansiyeli. Türkiye 7:6–10
  • 59. Teffera ZL, Li J, Debsu TM, Menegesha BY (2018) Assessing land use and land cover dynamics using composites of spectral indices and principal component analysis: a case study in middle Awash subbasin, Ethiopia. Appl Geog 96:109–129. https://doi.org/10.1016/j.apgeog.2018.05.015
  • 60. TSI (Turkish Statistical Institute) (2021) Population and Demography, (accessed on 11.08.2021) https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109
  • 61. Tucker CJ, Holben BN, Elgin JH, McMurtry JE (1981) Remote sensing of total dry matter accumulation in winter wheat. Remote Sens Environ 11:171–189
  • 62. USGS (2021) Earthexplorer (accessed on 25.05.2021) https://earthexplorer.usgs.gov
  • 63. Usman M, Liedl R, Shahid M, Abbas A (2015) Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. J Geogr Sci 25:1479–1506
  • 64. Valdiviezo-N JC, Téllez-Quiñones A, Salazar-Garibay A, López-Caloca AA (2018) Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: discussion. JOSA A 35(1):35–44
  • 65. Vanani HR, Ostad-Ali-Askari K (2022) Correct path to use flumes in water resources management. Appl Water Sci 12(8):1–9. https://doi.org/10.1007/s13201-022-01702-7
  • 66. Yazici Karabulut B, Atasoy AD, Can OT, Yesilnacar MI (2021) Electrocoagulation for nitrate removal in groundwater of intensive agricultural region: a case study of Harran plain. Turkey Environ Earth Sci 80(5):1–9
  • 67. Yesilnacar MI, Yenigun I (2011) Effect of irrigation on a deep aquifer: a case study from the semi-arid Harran Plain GAP Project, Turkey. Bulletin Engin Geol Environ 70(2):213–221
  • 68. Yesilnacar MI, Demir Yetis A, Dulgergil CT, Kumral M, Atasoy AD, Dogan TR, Aydogdu M (2016) Geomedical assessment of an area having high-fluoride groundwater in southeastern Turkey. Environ Earth Sci 75(2):162
  • 69. Yeşilnacar Mİ, Demir F, Uyanık S, Yılmaz G, Demir T (2007) Harran Ovası Yeraltı Suyu Kalitesi ve Kirlenme Potansiyelinin Belirlenmesi, TUBİTAK Proje Kodu: 104Y188 (CAYDAG) (In Turkish)
  • 70. Yetiş R, Atasoy A, Demir Yetiş A, Yeşilnacar Mİ (2018) Balikligol Havzasi Su Kaynaklarinin Nitrat ve Nitrit Seviyelerinin Belirlenmesi. CU Muh-Mim Fak Derg 33(1):47–54 (In Turkish)
  • 71. Yetis R, Atasoy AD, Demir Yetis A, Yesilnacar MI (2019) Hydrogeochemical characteristics and quality assessment of groundwater in Balikligol Basin, Sanliurfa. Turkey Environ Earth Sci 78(11):1–17
  • 72. Yetis R, Nergiz H, Demir Yetis A (2021) Effects of water quality on the species richness and population distribution of waterbirds in Ahlat marshes, Turkey. Biol 76:3299–3309. https://doi.org/10.1007/s11756-021-00810-0
  • 73. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f36a27c-a647-4f4a-bc70-3e337668367d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.