PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coercive limits for a subclass of monotonne constitutive equations in the theory of inelastic material behaviour of metals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove existence and uniqueness of strong global in tme solution for a subclass of monotone constitutive equations in the theory of inelastic material behaviour of metals without the coercivity assumption for the free energy function. We approximate noncoercive models by a sequence of coercive problems and prove the convergence result.
Rocznik
Tom
Strony
41--81
Opis fizyczny
Twórcy
  • Fachbereich Mathematik Technische Hochschule Darmstadt Schlossgartnerstr.. 7 64289 Darmstadt, Germany
Bibliografia
  • [1] H.-D. Alber, Global existence and boundedness of large solutions to nonlinear equations of viscoelasticity with hardening, Commun. Math. Phys. 166 (1995), 565-601.
  • [2] H.-D. Alber, Mathernatische Theorie des inelastischen Materialverhaltens von Metallen, Mitt. Ges. Angew. Math. Mech. 18 (1995), 9-38.
  • [3] H.-D. Alber, Initial-Boundary Value Problems for the Inelastic Material Behavior of Metals, Lecture Notes in Math, in preparation.
  • [4] J. P. Aubin, A. Cellina, Differential Inclusions, Berlin, Heidelberg: Springer 1984.
  • [5] D. Blanchard, P. Le Tallec, M. Ravachol, Numerical analysis of evolution problems in nonlinear small strains elastoviscoplasticity, Numer. Math. 55 (1989), 177-195.
  • [6] H. Brézis, Operateurs maximaux monotones, North Holland, Amsterdam, 1973.
  • [7] K. Chełmiński, Energy estimates and global in time results for a problem from nonlinear viscoelasticity, Bull. Acad. Polonaise Sci., Série Math. 44 (1996), 465-477.
  • [8] K. Chełmiński, H. D. Alber, Existence theory for the equations of inelastic material behavior of metals - Transformation of interior variables and energy estimates, Roczniki PTM: Appl. Math. 39 (1996), 1-15.
  • [9] K. Chełmiński, Stress L ͚ - estimates and the uniqueness problem for the quasistatic equations to the model of Bodner-Partom, To appear in Math. Methods Appl. Sci. (1997).
  • [10] K. Chełmiński, Stress L ͚ - estimates and the uniqueness problem for the equations to the model of Bodner-Partom in the two dimensional case, To appear in Math. Methods. Appl. Sci. (1997).
  • [11] K. Chełmiński, On initial-boundary value problems for the inelastic material behaviour of metals, To appear in Z. Angew. Math. Mech.
  • [12] G. Duvaut, J. L. Lions, Les inéquations en méchanique et en physique, Paris: Dunod 1972.
  • [13] L. C. Evans, Weak Convergence Methods for Partial Differential Equations, American Math. Society, Providence, 1990.
  • [14] B. Halphen, Nguyen Quoc Son, Sur les matériaux standards généralisés, J. Méc. 14 (1975), 39-63.
  • [15] I. R. Ionescu, M. Sofonea, Functional and numerical methods in viscoplasticity, Oxford, New York, Tokio: Oxford University Press, 1993.
  • [16] C. Johnson, Existence theorems for plasticity problems, J. Math. Pures Appl. 55 (1976), 431-444.
  • [17] C. Johnson, On plasticity with hardening, J. Math. Anal. Appl. 62 (1978), 325-336.
  • [18] P. Le Tallec, Numerical analysis of viscoelastic problems, Paris: Masson. Berlin, Heidelberg, New York: Springer 1990.
  • [19] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Dunod Gauthier-Villars, 1969.
  • [20] J. J. Moreau, Application of convex analysis to the treatment of elastoplastic systems, In: P. Germain, B. Nayroles (eds.) 56-89, 1976.
  • [21] J. J. Moreau, La notion de sur-potentiel et les liaisons unilatérales en élastostatique, C. R. Acad. Sci. Paris Sér. A267 (1968), 954-957.
  • [22] J. Nečas, I. Hlaváček, Mathematical theory of elastic and elastico-plastic-bodies: An introduction, Amsterdam, Oxford, New York: Elsevier 1981.
  • [23] A. Nouri, M. Rascle, A global existence and uniqueness theorem for a model problem in dynamic elasto-plasticity with isotropic strain-hardening, SIAM J. Math. Anal. 26 (1995), 850-868.
  • [24] M. Rascle, Global existence of L2 -solutions in dynamical elasto-plasticity, Mat. Contemp. 11 (1996), 121-134.
  • [25] P.-M. Suquet, Evolution problems for a class of dissipative materials, Quart. Appl. Math. 38 (1980/81), 391-114.
  • [26] R. Temam, Problèmes mathématiques en plasticité, Paris: Gauthier-Villars 1983.
  • [27] R. Temam, A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Arch. Rational Mech. Anal. 95 (1986), 137-183.
  • [28] A. Visintin, Differential models of hysteresis, Berlin: Springer 1994.
  • [29] E. Zeidler, Nonlinear functional analysis and its applications, IV, (Applications to mathematical physics.) New York: Springer 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f266e9b-a2bc-4c1f-b853-3990b895add0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.