PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecovoltaics - a truly ecological and green source of renewable goods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intensive exploitation of natural resources, expansion of human population and degradation of natural and semi-natural habitats, caused among others by agriculture, forestry and urbanisation, enforce special care for the natural resources, especially the disappearing types of vegetation that are refugees of biodiversity. One of the most threatened plant communities are grasslands (pastures and meadows), which has suffered the most in recent decades due to the intensification of agriculture and the transformation of land use. The purpose of this paper is to propose a hybrid approach to clean energy production on photovoltaic (PV) farms, taking into account the needs of grassland conservation and restoration. Nine sets of sciophilous species are proposed, including grasslands rich of pollinator benefits, grasslands with low pollen production to maintain high electrical efficiency of panels, and rich, standard meadows in wet (Molinion, Calthion, Alopecurion, Cnidion), fresh (Arrhenatherion) and dry (Cirsio-Brachypodion) types. The combination of clean energy and grassland conservation has been called ecovoltaics (EV) because it combines the production of renewable electricity with care for the diversity of valuable grassland ecosystems. The research will continue on an experimental ecovoltaic farm with innovative technical solutions to effectively maintain the desired meadow species composition. The purpose of this study was to analyse and select plant species that could be introduced into areas where PV cells are installed under climatic conditions in southern Poland. Using databases, environmental and ecological factors were taken into account. As a result of the study, a list of 206 species was selected that could be introduced to areas where they will coexist with PV panels, taking into account the effect of shading. The developed selection of these plant species provides a starting point for future work by botanists and engineers seeking to increase the biodiversity of sites where PV panels will be placed.
Słowa kluczowe
Rocznik
Strony
315--332
Opis fizyczny
Bibliogr. 67 poz., tab., wykr.
Twórcy
  • Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 1, 10-721 Olsztyn, Poland
  • Polish Academy of Sciences Botanical Garden - Center for Biological Diversity Conservation in Powsin, ul. Prawdziwka 2, 02-973 Warszawa, Poland
  • Institute of Biology, University of Opole, ul. Oleska 22, 45-052 Opole, ul. kard. B. Kominka 6, 6a, 45-032 Opole, Poland
  • Polish Academy of Sciences Botanical Garden - Center for Biological Diversity Conservation in Powsin, ul. Prawdziwka 2, 02-973 Warszawa, Poland
  • Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
autor
  • Institute of Biology, University of Opole, ul. Oleska 22, 45-052 Opole, ul. kard. B. Kominka 6, 6a, 45-032 Opole, Poland
  • Institute of Biology, University of Opole, ul. Oleska 22, 45-052 Opole, ul. kard. B. Kominka 6, 6a, 45-032 Opole, Poland
  • Society of Ecological Chemistry and Engineering, ul. Zawiszaków 3/103, 45-288 Opole, Poland
Bibliografia
  • [1] Jhariya MK, Banerjee A, Meena RS. Importance of natural resources conservation: Moving toward the sustainable world. Nat Resour Conserv Adv Sustain. 2022:3-27. DOI: 10.1016/B978-0-12-822976-7.00027-2.
  • [2] Yang F, Yuan H, Yi N. Natural resources, environment and the sustainable development. Urban Clim. 2022;42:101111. DOI: 10.1016/j.uclim.2022.101111.
  • [3] Sun X, Zhu BK, Zhang S, Zeng H, Li K, Wang B, et al. New indices system for quantifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978-2018. Sci Total Environ. 2022;804:150180. DOI: 10.1016/j.scitotenv.2021.150180.
  • [4] Zhang Y, Khan I, Zafar MW. Assessing environmental quality through natural resources, energy resources, and tax revenues. Environ Sci Pollut Res. 2022;29(59):89029-44. DOI: 10.1007/s11356-022-22005-z.
  • [5] Skovgaard J, van Asselt H. The politics of fossil fuel subsidies and their reform: Implications for climate change mitigation. WIREs Climate Change. 2019;10(4):1-12. DOI: 10.1002/wcc.581.
  • [6] Crist E, Mora C, Engelman R. The interaction of human population, food production, and biodiversity protection. Science. 2017;356:260-4. DOI: 10.1126/science.aal2011.
  • [7] Gonçalves-Souza D, Verburg PH, Dobrovolski R. Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions. Biol Conserv. 2020;246:108579. DOI: 10.1016/j.biocon.2020.108579.
  • [8] Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Renew Energy. 2022;183:90-102. DOI: 10.1016/j.renene.2021.10.067.
  • [9] AlOtaibi ZS, Khonkar HI, AlAmoudi AO, Alqahtani SH. Current status and future perspectives for localizing the solar photovoltaic industry in the Kingdom of Saudi Arabia. Energy Transitions. 2020;4(1):1-9. DOI: 10.1007/s41825-019-00020-y.
  • [10] Muresan AN, Sebastiani A, Gaglio M, Fano EA, Manes F. Assessment of air pollutants removal by green infrastructure and urban and peri-urban forests management for a greening plan in the Municipality of Ferrara (Po river plain, Italy). Ecol Indic. 2022;135:108554. DOI: 10.1016/j.ecolind.2022.108554.
  • [11] Choi C, Berry P, Smith A. The climate benefits, co-benefits, and trade-offs of green infrastructure: A systematic literature review. J Environ Manage. 2021;291:112583. DOI: 10.1016/j.jenvman.2021.112583.
  • [12] Jiang L. Research on low carbon financial support strategies from the perspective of eco-environmental protection. Ecol Chem Eng S. 2021;28(4):525-39. DOI: 10.2478/eces-2021-0035.
  • [13] Poggi F, Firmino A, Amado M. Planning renewable energy in rural areas: Impacts on occupation and land use. Energy. 2018;155:630-40. DOI: 10.1016/j.energy.2018.05.009.
  • [14] Kim C. A review of the deployment programs, impact, and barriers of renewable energy policies in Korea. Renew Sustain Energy Rev. 2021;144:110870. DOI: 10.1016/j.rser.2021.110870.
  • [15] Kruitwagen L, Story KT, Friedrich J, Byers L, Skillman S, Hepburn C. A global inventory of photovoltaic solar energy generating units. Nature. 2021;598(7882):604-10. DOI: 10.1038/s41586-021-03957-7.
  • [16] Dias L, Gouveia JP, Lourenço P, Seixas J. Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy. 2019;81:725-35. DOI: 10.1016/j.landusepol.2018.11.036.
  • [17] Goetzberger A, Zastrow A. On the coexistence of solar-energy conversion and plant cultivation. Int J Sol Energy. 1982;1(1):55-69. DOI: 10.1080/01425918208909875.
  • [18] Dupraz C, Marrou H, Talbot G, Dufour L, Nogier A, Ferard Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew Energy. 2011;36(10):2725-32. DOI: 10.1016/j.renene.2011.03.005.
  • [19] Serrano D, Margalida A, Juan M, Juste J, Traba J, Carrete M, et al. Renewables in Spain threaten biodiversity Small Aral Sea brings hope for Lake Balkhash Brazil’s areas of not-so-permanent preservation. Science. 2020;370(6522):1282-3. DOI: 10.1126/science.abf6509.
  • [20] Rehbein JA, Watson JEM, Lane JL, Sonter LJ, Venter O, Atkinson SC, et al. Renewable energy development threatens many globally important biodiversity areas. Glob Change Biol. 2020;26(5):3040-51. DOI: 10.1111/gcb.15067.
  • [21] Sturchio MA, Macknick JE, Barron-Gafford GA, Chen A, Alderfer C, Condon K, et al. Grassland productivity responds unexpectedly to dynamic light and soil water environments induced by photovoltaic arrays. Ecosphere. 2022;13(12):1-14. DOI: 10.1002/ecs2.4334.
  • [22] Vervloesem J, Marcheggiani E, Choudhury AM, Muys B. Effects of photovoltaic solar farms on microclimate and vegetation diversity. Sustainability. 2022;14(7493):1-31. DOI: 10.3390/su14127493.
  • [23] Barron-Gafford GA, Pavao-Zuckerman MA, Minor RL, Sutter LF, Barnett-Moreno I, Blackett DT, et al. Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands. Nat Sustain. 2019;2(9):848-55. DOI: 10.1038/s41893-019-0364-5.
  • [24] Sharpe KT, Heins BJ, Buchanan ES, Reese MH. Evaluation of solar photovoltaic systems to shade cows in a pasture-based dairy herd. J Dairy Sci. 2021;104(3):2794-806. DOI: 10.3168/jds.2020-18821.
  • [25] Carreño-Ortega A, Do Paço TA, Díaz-Pérez M, Gómez-Galán M. Lettuce production under mini-PV modules arranged in patterned designs. Agronomy. 2021;11(12):1-16. DOI: 10.3390/agronomy11122554.
  • [26] Sinha P, Hoffman B, Sakers J, Althouse L. Best practices in responsible land use for improving biodiversity at a utility-scale solar facility. Case Stud Environ. 2018;2(1):1-12. DOI: 10.1525/cse.2018.001123.
  • [27] Bai Z, Jia A, Bai Z, Qu S, Zhang M, Kong L, et al. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity. Front Microbiol. 2022;13:1-15. DOI: 10.3389/fmicb.2022.1065899.
  • [28] European Commission, Directorate-General for Environment, Tsiripidis I, Piernik A, Janssen J, Tahvanainen T, et al. European red list of habitats. Part 2, Terrestrial and freshwater habitats. Publications Office; 2017. ISBN: 9789279615887, DOI: 10.2779/091372.
  • [29] Nowak A, Nowak S. Anthropogenic changes of Opole Silesia plant cover (Poland, Central Europe). In: Nowak A, Nobis M, Kusza G, editors. Some Aspects of Nature Conservation and Environmental Protection in Poland and Tajikistan. Opole: Stow Ochr Przyr BIOS; 2008. pp. 77-98.
  • [30] Farrell C, Livesley SJ, Arndt SK, Beaumont L, Burley H, Ellsworth D, et al. Can we integrate ecological approaches to improve plant selection for green infrastructure? Urban for Urban Green. 2022;76:127732. DOI: 10.1016/j.ufug.2022.127732.
  • [31] Nowak A, Maślak M, Smieja A, Góra J, Kojs P, Nowak S, et al. Translocation of meadow, heath and fen to the Habitat Garden: The first insights after 4 years of the experiment. Appl Veg Sci. 2019;22(1):3-12. DOI: 10.1111/avsc.12405.
  • [32] Semeraro T, Pomes A, Del Giudice C, Negro D, Aretano R. Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Policy. 2018;117:218-27. DOI: 10.1016/j.enpol.2018.01.050.
  • [33] Wrzaszcz W, Prandecki K. Agriculture and the European Green Deal. Probl Agric Econ. 2020;365(4):156-79. DOI: 10.30858/zer/131841.
  • [34] Hermoso V, Carvalho SB, Giakoumi S, Goldsborough D, Katsanevakis S, Leontiou S, et al. The EU Biodiversity Strategy for 2030: Opportunities and challenges on the path towards biodiversity recovery. Environ Sci Policy. 2022;127:263-71. DOI: 10.1016/j.envsci.2021.10.028.
  • [35] Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski (Guide to the identification of plant communities of Poland). Warszawa: Wydawnictwo Naukowe PWN; 2013. ISBN: 9788301167073.
  • [36] Zarzycki K, Trzcińska-Tacik H, Różański W, Szeląg Z, Wołek J, Korzeniak U. Ecological indicator values of vascular plants of Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002. ISBN: 9788385444954.
  • [37] Dengler J, Jansen F, Chusova O, Hüllbusch E, Nobis MP, Van Meerbeek K, et al. Ecological Indicator Values Europe (EIVE) 1.0. Veg Classif Surv. 2023;4:7-29. DOI: 10.3897/VCS.98324.
  • [38] Klotz S, Kühn I, Durka W, Briemle G. BIOLFLOR: Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland (A database with biological-ecological features on the flora of Germany). Vol. 38. Bundesamt für Naturschutz Bonn; 2002. ISBN: 9783784335087.
  • [39] Zarzycki K, Kaźmierczakowa R, Mirek Z. Czerwona Księga Roślin. Paprotniki i rośliny kwiatowe. III. (Polish Red Book of Plants: Ferns and Flowering Plants). Kraków: Instytut Ochrony Przyrody PAN; 2014. ISBN: 978-83-61191-72-8.
  • [40] Zarzycki K, Szeląg Z. Red list of the vascular plants in Poland. Red list of plants and fungi in Poland. 2006. pp.9-20. ISBN: 9788389648389.
  • [41] Tokarska-Guzik B, Bzdȩga K, Dajdok Z, Mazurska K, Solarz W. Invasive alien plants in Poland - The state of research and the use of the results in practice. Environ Socio-Economic Stud. 2021;9(4):71-95. DOI: 10.2478/environ-2021-0027.
  • [42] Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M. Vascular Plants of Poland: An Annotated Checklist. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 2020, 526 pp. ISBN: 9788362975457.
  • [43] Eurostat. Permanent agricultural grassland in Europe. 2020. Available from: https://ec.europa.eu/eurostat/ statistics-explained/index.php?title=Permanent_agricultural_grassland_in_Europe.
  • [44] Schils RLM, Bufe C, Rhymer CM, Francksen RM, Klaus VH, Abdalla M, et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric Ecosyst Environ. 2022;330:107891. DOI: 10.1016/j.agee.2022.107891.
  • [45] Török P, Janišová M, Kuzemko A, Rusina S, Dajić Stevanović Z. Grasslands, their threats and management in Eastern Europe. In: Grasslands of the World: Diversity, Management and Conservation. 2018. pp. 64-88. ISBN: 9781498796292.
  • [46] Walter H, Breckle S-W. Ökologie der Erde, Band 3 Spezielle Ökologie der Gemäßigten und Arktischen Zonen Euro-Nordasiens (Ecology of the Earth, Volume 3 Special Ecology of the Temperate and Arctic Zones of Euro-North Asia). Breckle H. S-W, editor. Stuttgart, Germany: Schweizerbart Science Publishers; 1994. ISBN: 9783510654222. Available from: http://www.schweizerbart.de//publications/detail/isbn/9783510654222/Okologie%5C_der%5C_Erde%5C_Band%5C_3%5C_3%5C_uberarb%5C_Au.
  • [47] Ružičková H, Kalivoda H. Kvetnaté lúky: prírodné bohatstvo Slovenska (Flowery Meadows: The Natural Wealth of Slovakia). Veda; 2007. ISBN: 9788022409537.
  • [48] Mucina L, Bültmann H, Dierßen K, Theurillat JP, Raus T, Čarni A, et al. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci. 2016;19:3-264. DOI: 10.1111/avsc.12257.
  • [49] Pullin AS, BÁldi A, Can OE, Dieterich M, Kati V, Livoreil B, et al. Conservation focus on Europe: Major conservation policy issues that need to be informed by conservation science. Conserv Biol. 2009;23(4):818-24. DOI: 10.1111/J.1523-1739.2009.01283.x.
  • [50] Mirsanjari MM, Visockiene JS, Mohammadyari F, Zarandian A. Modelling of expansion changes of Vilnius City area and impacts on landscape patterns using an artificial neural network. Ecol Chem Eng S. 2021;28(3):429-47. DOI: 10.2478/eces-2021-0029.
  • [51] Jepsen MR, Kuemmerle T, Müller D, Erb K, Verburg PH, Haberl H, et al. Transitions in European land-management regimes between 1800 and 2010. Land Use Policy. 2015;49:53-64. DOI: 10.1016/j.landusepol.2015.07.003.
  • [52] Vanwambeke SO, Meyfroidt P, Nikodemus O. From USSR to EU: 20 years of rural landscape changes in Vidzeme, Latvia. Landsc Urban Plan. 2012;105(3):241-9. DOI: 10.1016/j.landurbplan.2011.12.009.
  • [53] Nowak A. Rośliny ustępujące i rzadkie w siedliskach antropogenicznych Śląska. Część I. Katalog stanowisk oraz charakterystyka gatunków (Receding and Rare Plants in Anthropogenic Habitats of Silesia. Part I. Catalogue of Sites and Species Characteristics). Opole: Wydawnictwo Uniwersytetu Opolskiego, Studia i Monografie; 2011, 230 pp. ISBN: 9788373954519.
  • [54] Nowak A. Rośliny ustępujące i rzadkie w siedliskach antropogenicznych Śląska. Część II. Studium florystyczno-ekologiczne. (Receding and Rare Plants in Anthropogenic Habitats of Silesia. Part II. Floristic-ecological study). Opole: Wydawnictwo Uniwersytetu Opolskiego, Studia i Monografie; 2011, 215 pp. ISBN: 9788373954519.
  • [55] Nowak A. Sozophytes (red-listed species) in Silesian anthropogenic habitats and their role in nature conservation. Biodivers Res Conserv. 2006;3(4):386-90. Available from: http://brc.amu.edu.pl/pdf-121576-50068?filename=Sozophytes%20_red_listed.pdf.
  • [56] Paszek I, Załuski T. Floristic diversity along the road-forest transition zone. Ecol Quest. 2003;3:101-11. Available from: https://eurekamag.com/research/012/094/012094427.php.
  • [57] Majumdar D, Pasqualetti MJ. Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landsc Urban Plan. 2018;170:150-68. DOI: 10.1016/j.landurbplan.2017.10.011.
  • [58] Harrison PA, Vandewalle M, Sykes MT, Berry PM, Bugter R, de Bello F, et al. Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodivers Conserv. 2010;19(10):2791-821. DOI: 10.1007/s10531-010-9789-x.
  • [59] Colding J, Folke C. The role of golf courses in biodiversity conservation and ecosystem management. Ecosystems. 2009;12(2):191-206. DOI: 10.1007/s10021-008-9217-1.
  • [60] Hönigová I, Vačkář D, Lorencová E, Melichar J, Götzl M, Sonderegger G, et al. Survey on grassland ecosystem services. Report to the EEA-European Topic Centre on Biological Diversity. Nat Conserv Agency Czech Republic, Prague. 2012;78. Available from: https://www.eionet.europa.eu/etcs/etc-bd/products/etcbd-reports/survey_on_grassland_ecosystem_services_cz.
  • [61] Berger M, Bastl M, Bouchal J, Dirr L, Berger U. The influence of air pollution on pollen allergy sufferers. Atemwegs- Lungenkrankheiten. 2022;48(2):49-53. DOI: 10.5414/ALX02284E.
  • [62] Darwish ZA, Kazem HA, Sopian K, Al-Goul MA, Alawadhi H. Effect of dust pollutant type on photovoltaic performance. Renew Sustain Energy Rev. 2015;41:735-44. DOI: 10.1016/j.rser.2014.08.068.
  • [63] Rudnicka M, Klugmann-Radziemska E. The issue of shading photovoltaic installation caused by dust accumulation on the glass surface. Ecol Chem Eng S. 2021;28(2):173-82. DOI: 10.2478/eces-2021-0013.
  • [64] Saiz CS, Martínez JP, Chivelet NM. Influence of pollen on solar photovoltaic energy: Literature review and experimental testing with pollen. Appl Sci. 2020;10(14). DOI: 10.3390/app10144733.
  • [65] Kazem HA, Chaichan MT. The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman. Sol Energy. 2019;187:30-8. DOI: 10.1016/j.solener.2019.05.036.
  • [66] Handler R, Pearce JM. Greener sheep: Life cycle analysis of integrated sheep agrivoltaic systems. Clean Energy Syst. 2022;3:100036. DOI: 10.1016/j.cles.2022.100036.
  • [67] Vaverková MD, Winkler J, Uldrijan D, Ogrodnik P, Vespalcová T, Aleksiejuk-Gawron J, et al. Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management. Renew Sustain Energy Rev. 2022;162:112491. DOI: 10.1016/j.rser.2022.112491.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f1b634a-d33f-4eed-9b3b-9e8fca7583e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.