PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of trait stability of soybean cultivated under various environmental conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soybean (Glycine max (L.) Merrill.) yielding potential depends on environmental conditions (precipitation, temperature, soil). The aim of the work was to evaluate stability of yielding (and other traits) of three soybean cultivars (Abelina, SG Anser, Merlin) grown under the climatic conditions of central-eastern Poland. The studied material was obtain in a field experiment conducted at Łączka (52°15' N, 21°95' E) during the growing seasons of 2017-2019. Trait stability was determined based on Shukla’s genotype stability variance and Wricke’s ecovalence describing the genotype-by-environment interaction. For all the examined parameters, there were found significant differences between successive growing seasons, cultivars, and cultivars within study years. The greatest influence of environmental conditions (years) was determined for plant height (64%) and first pod height (54.2%). Stability parameters indicated that cv. Abelina was the most stable in terms of yielding, 1000 seed weight, seed number per pod and average seed number per pod, cv. SG Anser being the least stable in this respect.
Wydawca
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
  • University of Siedlce, Faculty of Agricultural Sciences, 14 Prusa St., 08-110 Siedlce, Poland
  • University of Siedlce, Faculty of Agricultural Sciences, 14 Prusa St., 08-110 Siedlce, Poland
Bibliografia
  • Abalo, G. et al. (2003) “Genotype x environment interaction studies on yields of selected potato genotypes in Uganda,” African Crop Science Journal, 11(1), pp. 9–15.
  • Annicchiarico, P. (2002) “Defining adaptation strategies and yield-stability targets in breeding programmes,” in M.S. Kang (ed.) Quantitative genetics, genomics and plant breeding. Wallingford, UK: CABI Publishing, pp. 365–383. Available at: https://doi.org/10.1079/9780851996011.0365.
  • Arciniegas-Alarcn, S. et al. (2010) “An alternative methodology for imputing missing data in trials with genotype-by-environment interaction,” Biometrical Letters, 47, pp. 1–14.
  • Bhatia, V.S. et al. (2006) Yield gap analysis of soybean, groundnut, pigeonpea and chickpea in India using simulation modeling: Global Theme on Agroecosystems. Report no. 31. Patancheru, India: International Crops Research Institute for the Semi-Arid Tropics.
  • Boros, L. et al. (2021) “Wpływ genotypu i kontrastujących warunków klimatycznych na cechy fizykochemiczne nasion soi (Glycine max L. Merrill) [Effect of genotype and contrasting climate conditions on physical and chemical characteristics of soybean (Glycine max L. Merrill)],” Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 296, pp. 3–16. Available at: https://doi.org/10.37317/biul-2021-0009.
  • Ciampitti, I.A. and Salvagiotti, F. (2018) “New insights into soybean biological nitrogen fixation,” Agronomy Journal, 110(4), pp. 1185–1196. Available at: https://doi.org/10.2134/agronj2017.06.0348.
  • Cotes, J.M. et al. (2002) “Analyzing genotype by environment interaction in potato using yield-stability index,” American Journal of Potato Research, 79, pp. 211–218. Available at: https://doi.org/10.1007/BF02871937.
  • Dai, A. (2013) “Increasing drought under global warming in observations and models,” Nature Climate Change, 3(1), pp. 52–58. Available at: https://doi.org/10.1038/nclimate1811.
  • Desclaux, D., Huynh, T.T. and Roumet, P. (2000) “Identification of soybean plant characteristics that indicate the timing of drought stress,” Crop Science, 40(3), pp. 716–722. Available at: https://doi.org/10.2135/cropsci2000.403716x.
  • Elmerich, Ch. et al. (2023) “Identification of eco-climatic factors driving yields and genotype by environment interactions for yield in early maturity soybean using crop simulation,” Agronomy, 13, 322. Available at: https://doi.org/10.3390/agronomy13020322.
  • Ergo, V.V. et al. (2021) “Leaf photosynthesis and senescence in heated and droughted field-grown soybean with contrasting seed protein concentration,” Plant Physiology and Biochemistry, 166, pp. 437–447. Available at: https://doi.org/10.1016/j.plaphy.2021.06.008.
  • FAO (2015) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil. World Soil Resources Reports, 106. Rome: Food and Agriculture Organization.
  • Farooq, M. et al. (2009) “Plant drought stress: effects, mechanisms and management,” in E. Lichtfouse et al. (eds.) Sustainable agriculture. Dordrecht: Springer, pp. 153–188. Available at: https://doi.org/10.1007/978-90-481-2666-8_12.
  • Fathi, A. and Tari, D.B. (2016) “Effect of drought stress and its mechanism in plants,” International Journal of Life Sciences, 10(1), pp. 1–6.
  • Foyer, C.H. et al. (2016) “Neglecting legumes has compromised human health and sustainable,” Nature Plants, 2, 16112. Available at: https://doi.org/10.1038/nplants.2016.112.
  • Fraś, A. et al. (2018) “Wpływ genotypu, środowiska oraz interakcji G×E na skład chemiczny i aktywność alfa-amylazy ziarna pszenżyta ozimego [Influence of genotype, environment and G×E interaction on chemical composition and alpha-amylase activity of triticale grain],” Polish Journal of Agronomy, 35, pp. 3–14. Available at: https://doi.org/10.26114/pja.iung.375.2018.35.01.
  • Gass, T. et al. (1996) “Cold tolerance of soybean (Glycine max (L.) Merr.) during the reproductive phase,” European Journal of Agronomy, 5(1–2), pp. 71–88. Available at: https://doi.org/10.1016/S1161-0301(96)02011-4.
  • Gauch Jr., H.G. (2013) “A simple protocol for AMMI analysis of yield trials,” Crop Science, 53(5), pp. 1860–1869. Available at: https://doi.org/10.2135/cropsci2013.04.0241.
  • Gauch Jr., H. et al. (2011) “Two new strategies for detecting and understanding QTL× environment interactions,” Crop Science, 51(1), pp. 96–113. Available at: https://doi.org/10.2135/crops-ci2010.04.0206.
  • Graham, P.H. and Vance, C.P. (2003) “Legume importance and constraints to greater use,” Plant Physiology, 131, pp. 872–877. Available at: http://dx.doi.org/10.1104/pp.017004.
  • Hao, X.-Y. et al. (2010) “Impact of climatic change on soybean production: A review,” Chinese Journal of Applied Ecology, 21(10), pp. 2697–2706. PMID: 21328963.
  • Karges, K. et al. (2022) “Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe,” European Journal of Agronomy, 133, 126415. Available at: https://doi.org/10.1016/j.eja.2021.126415.
  • Kravchenko, A.N. and Bullock, D.G. (2000) “Correlation of corn and soybean grain yield with topography and soil properties,” Agronomy Journal, 92(1), pp. 75–83. Available at: https://doi.org/10.2134/agronj2000.92175x.
  • Ku, Y.S. et al. (2013) “Drought stress and tolerance in soybean,” in J. Board (ed.) A comprehensive survey of international soybean research – Genetics, physiology, agronomy and nitrogen relationships. IntechOpen, pp. 209–237. Available at: https://doi.org/10.5772/52945.
  • Kunert, K.J. et al. (2016) “Drought stress responses in soybean roots and nodules,” Frontiers in Plant Science, 7, 1015. Available at: https://doi.org/10.3389/fpls.2016.01015.
  • Lewandowska, S. (2019) Wpływ warunków przyrodniczych na plonowanie i właściwości chemiczne soi uprawianej na Opolszczyźnie [Influence of environmental conditions on yields and chemical composition of soybean grown in Opolskie Voivodeship]. Monografie CCXVIII. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
  • Mądry, W. (2003) “Zastosowanie modeli mieszanych Shukli i regresji łącznej do analizy stabilności i adaptacji genotypów. Część I. Podstawy teoretyczne [Using Shukla’s mixed model and the related joint regression model in analyses of stability and adaptation of genotypes. Part I. Theoretical considerations],” Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 226/227, pp. 7–14.
  • Navabi, A. et al. (2006) “Can spring wheat-growing megaenvironments in the northern Great Plains be dissected for representative locations or niche-adapted genotypes?,” Crop Science, 46(3), pp. 1107–1116. Available at: https://doi.org/10.2135/cropsci2005.06-0159.
  • Pietrzykowski, R., Mądry, W. and Warzecha, R. (1996) “Analiza stabilności i przystosowania genotypów do środowisk na podstawie serii doświadczeń wielokrotnych z kukurydzą [Analysis of the stability and adaptation of genotypes to environments based on a series of repeated experiments with maize],” Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 200, pp. 33–39.
  • Popović, V. et al. (2013) “Stability of soybean yield and quality components,” African Journal of Agricultural Research, 8(45), pp. 5651–5658. Available at: https://doi.org/10.5897/AJAR12.1146.
  • Pour-Aboughadareh, P. et al. (2022) “Stability indices to deciphering the Genotype-by-Environment Interaction (GEI) effect: An applicable review for use in plant breeding programs,” Plants, 11, 414. Available at: https://doi.org/10.3390/plants11030414.
  • Ron De, A.M. et al. (2004) “Environmental and genotypic effects on pod characteristics related to common bean quality,” Journal of Agronomy and Crop Science, 190(4), pp. 248–255. Available at: https://doi.org/10.1111/j.1439-037X.2004.00098.x.
  • Sanginga, N. (2003) “Role of biological nitrogen fixation in legume based cropping systems: A case study of West Africa farming systems,” Plant and Soil, 252, pp. 25–39. Available at: https://doi.org/10.1023/A:1024192604607.
  • Shukla, G.K. (1972) “Some aspects of partitioning genotype – environmental components of variability,” Heredity, 28, pp. 237–245.
  • Staniak, M., Szpunar-Krok, E. and Kocira, A. (2023) “Responses of soybean to selected abiotic stresses – Photoperiod, temperature and water,” Agriculture, 13(1), 146. Available at: https://doi.org/10.3390/agriculture13010146.
  • Sun, J. et al. (2018) “Importing food damages domestic environment: Evidence from global soybean trade,” Proceedings of the National Academy of Sciences, 115(21), pp. 5415–5419. Available at: https://doi.org/10.1073/pnas.1718153115.
  • Tuberosa, R. and Salvi, S. (2006) “Genomics-based approaches to improve drought tolerance of crops,” Trends in Plant Science, 11(8), pp. 405–412. Available at: https://doi.org/10.1016/j.tplants.2006.06.003.
  • Vogel, J. et al. (2021a) “Identifying meteorological drivers of extreme impacts: An application to simulated crop yields,” Earth System Dynamics Discussions, 2020, pp. 1–27. Available at: https://doi.org/10.5194/esd-12-151-2021.
  • Vogel, J.T. et al. (2021b). “Soybean yield formation physiology – a foundation for precision breeding based improvement,” Frontiers in Plant Science, 12, 719706. Available at: https://doi.org/10.3389/fpls.2021.719706.
  • Warzecha, E. (1983) “Przebieg wegetacji oraz charakterystyka wybranych cech soi w warunkach klimatycznych Polski [Development and characteristics of selected soybean traits under the climatic conditions of Poland],” Acta Agrobotnica, 36(1–2), pp. 191–202.
  • Wricke, G. (1965) “Die Erfassung der Wechselwirkung zwischen Genotyp und Umwelt bei quantitativen Eigenschafen [Capturing the interaction between genotype and environment in quantitative traits],” Zeitschrift fur Pflanzenzuchtung, 53(4), pp. 266–343.
  • Vugt Van, D., Franke, A.C. and Giller, K.E. (2017) “Participatory research to close the soybean yield gap on smallholder farms in Malawi,” Experimental Agriculture, 53(3), pp. 396–415. Available at: https://doi.org 10.1017/S0014479716000430.
  • Yan, W. and Rajcan, I. (2002) “Biplot analysis of test sites and trait relations of soybean in Ontario,” Crop Science, 42(1), pp. 11–20. Available at: https://doi.org/10.2135/cropsci2002.1100.
  • Zobel, R.W., Wright, M.G. and Gauch Jr., H.G. (1988) “Statistical analysis of yield trial” Agronomy Journal, 80(3), pp. 388–393. Available at: https://doi.org/10.2134/agronj1988.00021962008000030002x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f1b3df0-afc3-4186-9df0-787ab2d50540
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.