PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-contact harmonic detection of ferromagnetic material defects based on SQGSR and OPLTF

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to find the defects in ferromagnetic materials, a non-contact harmonic detection method is proposed. According to the principle of frequency modulated carrier wave, a tunnel magneto resistance harmonic focusing vector array detector was designed which radiates lower and higher frequency electromagnetic waves through the coil array to the detection targets. We use bistable stochastic resonance to enhance the energy of collected weak target signal and apply quantum computation and a Sobol low deviation sequence to improve genetic algorithm performance. Then we use the orthogonal phase-locked loop to eliminate the intrinsic background excitation field and tensor calculations to fuse the vector array signal. The finite element model of array detector and the magnetic dipole harmonic numerical model were also established. The simulation results show that the target signal can be identified effectively, its focusing performance is improved by 2 times, and the average signal-to-noise ratio is improved by 9.6 times after the algorithm processing. For the experiments, we take Q235 steel pipeline as the object to realize the recognition of three defects. Compared with the traditional methods, the proposed method is more effective for ferromagnetic materials defects detection.
Rocznik
Strony
55--72
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
  • Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
Bibliografia
  • [1] Ruibin, G., Wen, J. D., Fei, Q., Min, Y., Zhang, W. G. (2015). Welding residual stress measurement of an urban buried gas pipeline by X-ray diffraction method. Insight: Non-Destructive Testing & Condition Monitoring, 57(10), 556-561. https://doi.org/10.1784/insi.2015.57.10.556
  • [2] Chang, M. K., Sun, H. S., & Ciou, J. C. (2011). Applying Ultrasonic Testing to Detect Hole Defect Near the Surface. Advanced Materials Research, 194-196, 2054-2057. https://doi.org/10.4028/www.scientific.net/amr.194-196.2054
  • [3] Song, S. P., & Que, P. W. (2006). An effective defect identification scheme in pipeline ultrasonic testing. Russian Journal of Nondestructive Testing, 42(4), 255-260. https://doi.org/10.1134/s1061830906040061
  • [4] Dai, X., Mo, J. Q., Yin, B., Hu, W., & Wang, S. G. (2013). An automatic magnetic particle inspection system for detecting defects in mooring chains. Insight: Non-Destructive Testing and Condition Monitoring, 55(1), 29-34. https://doi.org/10.1784/insi.2012.55.1.29
  • [5] Cicic, D. T., Amza, C. G., Popescu, D., & Anania, F. D. (2013). Automated Stand for Non-Destructive Testing Evaluation of Metal Products. Applied Mechanics and Materials, 371, 401-405. https://doi.org/10.4028/www.scientific.net/amm.371.401
  • [6] Rosado, L. S., Janeiro, F. M., Ramos, P. M., & Piedade, M. (2013). Defect Characterization With Eddy Current Testing Using Nonlinear-Regression Feature Extraction and Artificial Neural Networks. IEEE Transactions on Instrumentation & Measurement, 62(5), 1207-1214. https://doi.org/10.1109/tim.2012.2236729
  • [7] Ali, K. B., Abdalla, A. N., Rifai, D., & Faraj, M. A. (2017). Review on system development in Eddy current testing and technique for defect classification and characterization. IET Circuits Devices & Systems, 11(4), 330-343. https://doi.org/10.1049/iet-cds.2016.0327
  • [8] Feng, Q. S., Li, R., Nie, B. H., Liu, S. C., Zhao, L. Y., & Zhang, H. (2016). Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection. Sensors, 17(1). https://doi.org/10.3390/s17010050
  • [9] Liu, B., He, L. Y., Zhang, H., Cao, Y., & Fernandes, H. (2017). The axial crack testing model for long distance oil-gas pipeline based on magnetic flux leakage internal inspection method. Measurement, 103, 275-282. https://doi.org/10.1016/j.measurement.2017.02.051
  • [10] Hu, B., Yu, R., & Liu, J. (2016). Experimental study on the corrosion testing of a buried metal pipeline by transient electromagnetic method. Anti-Corros Methods Mater., 63(4), 262-268. https://doi.org/10.1108/a cmm-10-2014-1444
  • [11] Liao, K. X., Quan, K. Y., & Chun, Z. (2011). Principle and technical characteristics of non-contact magnetic tomography method inspection for oil and gas pipeline. ICPTT, Sustainable Solutions for Water, Sewer, Gas, And Oil Pipelines, 1039-1048. https://doi.org/10.1061/41202(423)111
  • [12] Zhang, T., Wang, X. H., Chen, Y. C., Zia, U., Ju, H. Y., & Zhao, Y. Z. (2019). Non-contact geomagnetic detection using improved complete ensemble empirical mode decomposition with adaptive noise and Teager energy operator. Electronics, 8(3), 309. https://doi.org/10.3390/electronics8030309
  • [13] Song, Q., Ding, W. X., Peng, H., Gu, J. J., & Shuai, J. (2017). Pipe Defect Detection with Remote Magnetic Inspection and Wavelet Analysis. Wireless Personal Communications, 95(3), 2299-2313. https://doi.org/10.1007/s11277-017-4092-8
  • [14] Huang, Y. M., Wu, D., Zhang, Z. F., Chen, H. B., & Chen, S. B. (2017). EMD Based Pulsed TIG Welding Process Porosity Defect Detection and Defect Diagnosis using GA-SVM. Journal of Materials Processing Technology, 239, 92-102. https://doi.org/10.1016/j.jmatprotec.2016.07.015
  • [15] Amirat, Y., Benbouzid, M. E. H., Wang, T., Bacha, K., & Feld, G. (2018). EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133, 202-209. https://doi.org/10.1016/j.apacoust.2017.12.030
  • [16] Shi, P. M., Yuan, D. Z., Han, D. Y., Zhang, Y., & Fu, R. R. (2018). Stochastic resonance in a time-delayed feedback tristable system and its application in fault diagnosis. Journal of Sound Vibration, 424, 1-14. https://doi.org/10.1016/j.jsv.2018.03.007
  • [17] Ryu, C, Kong, S. G., & Kim, H. (2011). Enhancement of feature extraction for low-quality fingerprint images using stochastic resonance. Pattern Recognition Letters, 32(2), 107-113. https://doi.org/10.1016/j.patrec.2010.09.008
  • [18] He, L. F., Cao, L., Zhang, G., & Yi, T. (2018). Weak signal detection based on underdamped stochastic resonance with an exponential bistable potential. Chinese Journal of Physics, 56, 1588-1598. https://doi.org/10.1016/j.cjph.2018.05.001
  • [19] Wan, C. B., Pan, M. C., Zhang, Q., Wu, F. H., Pan, L., & Sun, X. Y. (2018). Magnetic Anomaly Detection Based on Stochastic Resonance. Sensors and Actuators A: Physical, 278, 11-17. https://doi.org/10.1016/j.sna.2018.05.009
  • [20] Shi, P. M., An, S. J., Li, P., & Han, D. Y. (2016). Signal feature extraction based on cascaded multi-stable stochastic resonance denoising and EMD method. Measurement, 90, 318-328. https://doi.org/10.1016/j.measurement.2016.04.073
  • [21] Hong, K. L., Chang, B. H., Reza, M., & Xiong, Z. L. (2018). Weak Defect Identification for Centrifugal Compressor Blade Crack Based on Pressure Sensors and Genetic Algorithm. Sensors, 18(4), 1264. https://doi.org/10.3390/s18041264
  • [22] Yin, G., Zhang, Y. T., Fan, H. B., Ren, G. Q., & Li, Z. N. (2015). One-step calibration of magnetic gradient tensor system with nonlinear least square method. Sensors & Actuators A Physical, 229, 77-85. https://doi.org/10.1016/j.sna.2015.03.026
  • [23] Yin, G., Zhang, Y. T., Fan, H. B., Ren, G. Q., & Li, Z. N. (2015). Integrated calibration of magnetic gradient tensor system. Journal of Magnetism and Magnetic Materials, 374, 289-297. https://doi.org/10.1016/j.jmmm.2014.08.022
  • [24] Fartookzadeh, M. (2019). Serial-fed linear frequency diverse arrays for obtaining direction of arrival (DOA) of frequency modulated continuous waveform (FMCW) sources with ambiguity reduction. International Journal of RF and Microwave Computer-Aided Engineering, 29(10), e21900. https://doi.org/10.1002/mmce.21900
  • [25] Wang, S., Wang, F. Z., Wang, S., & Li, G. J. (2018). Detection of multi-frequency weak signals with adaptive stochastic resonance system. Chinese Journal of Physics, 56(3): 994-1000. https://doi.org/10.1016/j.cjph.2018.04.001
  • [26] Lai, Z. H., & Leng, Y. G. (2016). Weak-signal detection based on the stochastic resonance of bistable duffing oscillator and its application in incipient fault diagnosis. Mechanical Systems & Signal Processing, 81, 60-74. https://doi.org/10.1016/j.ymssp.2016.04.002
  • [27] Zhu, X. T., Xiong, J. B., & Liang, Q. (2018). Fault Diagnosis of Rotation Machinery based on Support Vector Machine Optimized by Quantum Genetic Algorithm. IEEE Access, 6. https://doi.org/10.1109/access.2018.2789933
  • [28] Jin, Z. F., Hou, Z. Q., Yu, W. S., & Wang, X. (2018). Target tracking approach via quantum genetic algorithm. IET Computer Vision, 12(3), 241-251. https://doi.org/10.1049/iet-cvi.2017.0176
  • [29] Monica, T., Rajasekhar, A., Pant, M., & Abraham, A. (2011). Enhancing the Local Exploration Capabilities of Artificial Bee Colony Using Low Discrepancy Sobol Sequence. Communications in Computer & Information Science, 168, 158-168. https://doi.org/10.1007/978-3-642-22606-9_19
  • [30] Sui, Y. Y., Leslie, K., & Clark, D. (2017). Multiple-Order Magnetic Gradient Tensors for Localization of a Magnetic Dipole. IEEE Magnetics Letters, 8, 1-5. https://doi.org/10.1109/lmag.2017.2708682
  • [31] Dubov, A. A., Dubov, AI. A., & Kolokolnikov, S. M. (2017). Non-contact magnetometric diagnostics of potentially hazardous sections of buried and insulated pipelines susceptible to failure. Welding in the World, 61(1), 107-115. https://doi.org/10.1007/s40194-016-0402-0
Uwagi
1. This study was supported by the National Key Research and Development Program of China (grant # 2017YFC0805005-1) and the Key Project of Beijing Municipal Education Commission (grant # KZ201810005009).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4f12be73-f0d2-4193-8557-3869858057bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.